
In his revolutionary essay of 1857,
Theory of Abelian Functions, Bern-

hard Riemann brought to light the
deeper epistemological significance of
the complex domain, through a new
and bold application of a principle of
physical action which he called “Dirich-
let’s Principle.” Riemann’s approach,
combined with what he enunciated in
his habilitation dissertation of 1854, not
only ushered in a revolution in scientific
thinking: it ignited a counter-reaction
as fierce as the one launched, for the
same reasons, against Nicolaus Cusa,
Kepler, Fermat, and Leibniz by the
Venetian-British-controlled empiricist
school of Galileo, Newton, Euler, and
Lagrange, a counter-reaction that con-
tinues to rage to this day, with implica-
tions that reach far beyond the specific
setting of Riemann’s 1857 paper.
Despite the volumes that have been
written on this subject, from Riemann’s
time to ours, an honest examination of
the history of the matter reveals that,
just as Gauss demonstrated the fraud of
Euler, Lagrange, and d’Alembert in his
1799 proof of the Fundamental Theo-
rem of algebra, Riemann was right, and

his critics, like today’s Straussian con-
trollers of Bush and Cheney, were
malevolent frauds.

We cannot know for sure whether,
when Riemann chose to call this
method an application of “Dirichlet’s
Principle,” he expected to provoke the
reaction he received, or if he was mere-
ly stating what would have been obvi-
ous to anyone within the extended net-
work of Abraham Kästner’s students.
Nevertheless, it is fortunate for us that
he used that name, as it enables us to
fairly accurately reconstruct, not only
the scientific origins of Riemann’s
thought, but the historical-political
process from which it arose.

Enter Lejeune Dirichlet

Johann Peter Gustav Lejeune Dirichlet
was a pivotal figure in early Nine-
teenth-century science. Born in 1805 to
a family of Belgian origin living near
Aachen, his early education took place
in Bonn. At the age of 16, with a copy
of Gauss’s Disquisitiones Arithmeticae
under his arm, he went to Paris to
audit lectures at the College de France
and the Faculté des Sciences. After a
year, Dirichlet became employed as a
tutor by General Maximilien Sebastien
Foy, a republican member of the
Chamber of Deputies, who introduced
him to Alexander von Humboldt.
After Foy’s death in 1825, von Hum-
boldt recruited Dirichlet to return to
Germany, arranged for him to get a
degree (even though Dirichlet refused
to speak Latin), and eventually suc-
ceeded in obtaining for him a profes-
sorship at the University of Berlin.
There, in addition to meeting, and
marrying, Moses Mendelssohn’s grand-
daughter Rebecca (a sister of the com-
poser Felix Mendelssohn—see Part 2),
Dirichlet developed a fruitful collabo-
ration with Karl Jacobi and Jakob
Steiner, including touring Italy with
both in 1843 under Alexander von

Humboldt’s sponsorship.
In 1847, Riemann arrived in Berlin to

study with Dirichlet, Jacobi, and Steiner,
having spent the previous two years study-
ing with Gauss. In 1849 he returned to
Göttingen to complete his studies, and in
1851, under Gauss’s direction, published
his doctoral dissertation, “The Founda-
tions for a General Theory of Functions of
a Complex Variable Magnitude,” in
which he for the first time applied his
principle, without mention of Dirichlet.
When Gauss died in 1855, Dirichlet was
appointed his successor, bringing himself
back into contact with Riemann, who had
received permission to teach just seven
months earlier, after delivering his habili-
tation lecture, “On the Hypotheses Which
Lie at the Foundations of Geometry.” In
1857, Riemann published the Theory of
Abelian Functions, in which, for the first
time, he identified as “Dirichlet’s Princi-
ple,” the principle on which his new theo-
ries were based. Dirichlet died two years
later, and Riemann, now 33 years old, was
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appointed to Dirichlet’s chair, a position
he held until his own premature death
only seven years later.

The Potential

What Riemann called “Dirichlet’s Princi-
ple,” arose out of Gauss’s application of
the complex domain to his investigations
in geodesy and terrestrial magnetism, the
former organized in collaboration with
Heinrich Schumacher beginning in 1818,
and the latter initiated by Alexander von
Humboldt in 1832. Both projects had
enormous practical benefits. Each pro-
duced detailed maps of their respective
physical effects, which were vital for
infrastructure development, and Hum-
boldt’s project organized, for the first
time, an international collaborative net-
work of scientists that would have an
impact on the development of the physi-
cal economy from the Americas to Eura-
sia for generations. But, Gauss recognized
that both projects posed deeper epistemo-
logical questions for science. Writing in
his General Theory of Earth Magnetism in
1839, Gauss said that a complete and
accurate map of the observations was not,
in itself, a proper goal for science, since
“one has only the cornerstone, not the
building, as long as one has not subjugat-
ed the appearances to an underlying prin-
ciple.” Citing the case of astronomy as an
example, Gauss said that mapping the
observations of the apparent motions of
the heavenly bodies onto the celestial
sphere, was just a beginning: Only once
the underlying principle of gravitation
was discovered, could the actual orbits of
the planets be determined.

Gauss recognized that the first step
in both geodesy and geomagnetism was
the measurement of changes in the
effects both phenomena had on the mea-
suring instruments. In the case of geo-
desy, this meant changes in the direction
of a plumb bob, or plane level, as those
changes were mapped onto the celestial
sphere. The case of geomagnetism is
more complicated. Here, changes in the
direction of a compass needle were
being measured, with respect to three
directions and time. The general ques-
tion was: What is the characteristic
nature of the principle of gravitation, or
geomagnetism, that would produce

these apparent effects? The specific task
was: How, from these infinitesimally
small, measured changes in the apparent
effects, can that general characteristic be
determined?

It is the second question which brings
us more directly into contact with what
Riemann called “Dirichlet’s Principle.”
However, the task of understanding
“Dirichlet’s Principle” will be made much
easier, if we first look at the elementary,
but congruent case of the catenary.

The relevant focus for this discussion
is the devastating rebuke which Leibniz
and Bernoulli delivered to Galileo and
Newton over the case of the catenary.
Galileo had insisted that all that needed,
or could, be known about the catenary,
was a description of its visible shape. On
the other hand, Leibniz and Bernoulli
insisted that the shape of the catenary
was merely the visible effect of an
underlying physical principle, and that
the correct shape could not be deter-
mined until the underlying principle
was known. As has been developed in
previous Pedagogical Exercises,1 Leib-
niz and Bernoulli determined the char-
acteristic nature of that principle, by first
determining the changing physical
effect of that principle in the infinitesi-
mally small, and then, by inversion, the
overall characteristic of the principle.
The result was Leibniz’s discovery that

the shape of the hanging chain reflected
the least-action effect of the principle of
universal gravitation, and that this effect
could be expressed geometrically as the
arithmetic mean between two contrari-
wise exponential functions.2

It is of extreme importance to empha-
size that we are speaking here of the physi-
cal hanging chain, and not a formal math-
ematical expression. In a formal mathe-
matical expression, the exponential curves
have no boundary. But the physical hang-
ing chain does—the positions of the hang-
ing points; consequently, the specific shape
of the chain is determined by the positions
of the hanging points relative to the weight
and length of the chain. If the positions of
the hanging points change, the position of
every link in the chain also changes, albeit
always in accordance with the relationship
cited above. In other words, as the bound-
ary conditions of the physical chain
change, so does the specific path of the
chain, but that path’s general form, required
by the principle of least-action, is always a
catenary. It will never become a parabola or
any other curve [SEE Figure 1].

This example illustrates an aspect of
the method that Leibniz originally
called “analysis situs”—or what Gauss
and Carnot later called “geometry of
position”—that is relevant to an under-
standing of Riemann’s “Dirichlet’s Prin-
ciple.” The positions of the individual

links in the chain are a func-
tion of the relationship of
the boundary conditions
(positions of the hanging
points, relative to the length
of the chain) to the charac-
teristic curvature of the
principle of gravitation, and
not by pair-wise relation-
ships among the links them-
selves. In other words, the
position of any individual
link is not determined by a
distance to the right or left,
and a distance up or down,
from its neighbors, as the
Cartesians and Newtonians
would insist. Rather, the
position of each link is a
function of the characteristic
of change of the physical
action as a whole. Any
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FIGURE 1. Various catenaries generated by
changing the position of hanging point B. 

FIGURE 4b


Generation of the Catenary 

The catenary is formed by suspending a chain between two fixed 
points. Varying the endpoint position of the chain generates a 
family of catenaries. 
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change in the boundary conditions,
changes the position of every link, as a
whole in conformity with the least-
action principle of the catenary. Thus,
the effect in the visible domain of the
unseen physical principle, is expressed
by the characteristic of change demand-
ed by the principle of least-action. This
is what determines the specific positions
of the links. In other words, position is a
function of change.

Gauss recognized that the principles
underlying geodesy and geomagnetism
could be understood by an extension of
Leibniz’s method. He rejected the popu-
larly accepted, but provably false

method of Newton, which attempted to
explain these phenomena as resulting
from the pair-wise interaction of materi-
al bodies, according to the algebraic for-
mula of the inverse square.3 Instead,
Gauss insisted that these phenomena, as
in the case of the catenary, must be
understood as a unified process, in
which the local variations in the position
of the plumb bob or compass needle
were a function of the characteristic of
the principle governing the phenome-
non as a whole. That whole, Gauss
called “the potential,” which is the Latin
equivalent of the Greek “dynamis,” or
Leibniz’s “kraft” (or Latin “vis viva”).
Gauss invented the idea of a “potential
function,” to express the least-action
effect of the physical principle over an
area or volume, in a similar, but extend-
ed manner to that used by Leibniz to
express the effect of gravity in produc-
ing the curvature of the hanging chain.

To accomplish this, Gauss extended
Leibniz’s idea of a function, into the
complex domain.

This transformed Leibniz’s func-
tions—which characterized a single
minimal pathway—into Gauss’s
“potential function,” which character-
ized a whole class of minimal pathways:
in effect, a function of functions. In
other words, if Leibniz’s catenary is
understood to be a minimal pathway
determined by one set of two functions,
Gauss’s potential function takes the
next step, to a function that unifies two
(or more) sets of functions. Riemann
would later show that these sets of min-
imal pathways implicitly define mini-
mal surfaces, as, for example, the
catenoid formed by a soap film sus-
pended between two circular rings [SEE

Figure 2].
These sets of functions are not arbi-

trary. They are related by a special type
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FIGURE 5. The rate of change of the curvature of corresponding orthogonal ellipses and hyperbolas is always equal.

FIGURE 2. A catenoid formed by a soap
film suspended between two circles.
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FIGURE 3. A harmonic set of circles
and radial lines.

FIGURE 4. A harmonic set of ellipses
and hyperbolas.



of relationship, called by the descriptive
names “spherical” or “harmonic” func-
tions. A spherical or harmonic function
is a set of orthogonal functions, all of
whose curvatures are changing at the
same rate.

This can most easily be illustrated
pedagogically with some geometric
examples. A set of concentric circles and
radial lines composes an harmonic func-
tion, because both the circles and the
radial lines intersect orthogonally, and
both have constant curvature [SEE Fig-
ure 3]. A more illustrative example is a
set of orthogonal ellipses and hyperbolas
[SEE Figure 4]. To get an intuitive grasp
of their harmonic relationship, think
through the following. Each ellipse is
associated with a confocal orthogonal
hyperbola. Beginning at the point where
both curves meet the axis, create in your
mind a connected action that moves
simultaneously on both curves [SEE Fig-
ure 5]. Note that, as the curvature on the
hyperbola becomes less curved, so does
the curvature on the corresponding
ellipse, and at the same rate.

Thus, harmonic functions relate two
sets of different curves, such that the rate
of change of their respective curvatures
is always equal. (We could calculate this
relationship precisely using Leibniz’s cal-
culus, but an intuitive understanding is
sufficient for present purposes.)

Furthermore, a set of harmonic func-
tions need not be of familiar curves, such
as circles, lines, ellipses, or hyperbolas. In
fact, very complicated sets of functions
can be harmonic [SEE Figure 6].

By contrast, a set of circles and
hyperbolas is not harmonic, because the
curvature of the circle is constant, while
the curvature of the hyperbola is chang-
ing. Consequently, the two sets of these
curves are not orthogonal [SEE Figure 7].

Gauss recognized that Leibniz’s prin-
ciple of least-action with respect to the
surfaces and volumes encountered in
phenomena like terrestrial gravitation
and magnetism, could be expressed by
harmonic functions. One set of curves of
the harmonic function expressed the
pathways of minimal change in the
potential for action, while the other,
orthogonal curves expressed the path-
ways of maximum change in the poten-

tial for action. For example, if the Earth
were perfectly spherical, its minimum
and maximum of potential action could
be expressed by a series of concentric
spherical shells and orthogonal planes. A
cross-section of such a configuration
would be harmonically related circles
and radial lines. If the Earth were per-
fectly ellipsoidal, its potential would be
expressed by a set of triply orthogonal
ellipsoids and hyperboloids whose cross
section would be the harmonically relat-
ed set of ellipses and hyperbolas illustrat-
ed in Figure 4.

But, as Gauss emphasized, the shape
of the Earth is much more complicated
than a sphere or an ellipsoid, with
respect to both gravity and magnetism,
and the pathways of minimal and maxi-
mal potential for action are not such
simple and well-known curves as circles,
lines, ellipses, or hyperbolas. Thus, a
more complex harmonic function must
be found, to express these principles.
Such a function could not be deter-
mined a priori, but only from the mea-
sured changes in the effect of the Earth’s
gravity or magnetism.

The question for Gauss was: How to
determine the true physical shape of the
Earth, or the characteristic of the Earth’s
magnetism, from the measured, infini-
tesimally small changes in its potential
obtained by his geodetic and magnetic
measurements?

This begins to get us closer to a first
approximation of what Riemann called
“Dirichlet’s Principle.”

To make a precise determination of

the Earth’s surface, or magnetic effect, as
Gauss did, is quite complicated, but the
principle on which his method was based
is within the scope of this Pedagogy. If
one recognizes, as Gauss did, that changes
in the direction of the plumb bob are
measuring changes in direction of the
potential function, then the physical shape
of the Earth has the same relationship to
this potential, as the hanging points have
to the catenary. In other words, the sur-
face of the Earth must be understood as
merely the boundary of the potential, or,
as Gauss put it, “the physical surface of
the Earth is, in a geometric sense, the sur-
face that is everywhere perpendicular to
the pull of gravity.”

A reference to the ancient Pythagore-
an problem of doubling the line, square,
or cube, can shed some light on this idea.
The line is bounded by points, the
square by lines, and the cube by squares.
The size and position of these bound-
aries is determined by the length, area,
or volume they enclose. For example, it
is the square that determines the size
and position of its sides, even though it
is the latter that you see, and the former
that you don’t. The sides of the square
are lines, but they are produced by a dif-
ferent power (potential), than the lines
produced from other lines. Similarly,
the size and position of the squares that
form the boundaries of a cube are pro-
duced by a different power (potential),
than the squares formed by the diagonal
of another square. Thus, even though
the power can not be seen, it can be
measured by its unique, characteristic
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FIGURE 7. A set of circles and
hyperbolas is not harmonic.

FIGURE 6. A harmonic set of cubic
curves.



effect on the boundaries of its action.
Now, apply this same method of

thought to the physical principles dis-
cussed above. The catenary is a curve
whose boundaries are points. A catenoid
is a surface whose boundaries are curves.
The surface of the Earth is the boundary
of a gravitational volume. The magnetic

effect of the Earth is still more compli-
cated, and will be taken up in more
detail in a future Pedagogical.

This connected relationship between
the boundary conditions of a physical
process, and the expression of the princi-
ple of least-action with respect to that
physical process, is the relationship to

which Riemann is referring when he
speaks of “Dirichlet’s Principle.”

From Gauss, to Dirichlet, to Riemann

After succeeding Gauss in 1855, Dirichlet
began lecturing on Gauss’s potential the-
ory at Göttingen, while Riemann was
preparing his Theory of Abelian Functions.
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(a)

(c)

(b)

FIGURE 8. Transformation of harmonic sets of circles and radial lines. (a) The point of intersection of the radial lines moves in a
straight line upward. (b) The point of intersection of the radial lines moves in a circle. (c) The point of intersection of the radial lines
moves along the path of a lemniscate.



What Gauss, Dirichlet, and Riemann all
recognized was, that complex functions,
as the extension of Leibniz’s concept of
the catenary and natural logarithms,
were uniquely suited to express the least-
action pathways of potential functions.

Gauss had already demonstrated this
in his 1799 proof of the Fundamental
Theorem of algebra, where he showed
that a complex algebraic expression pro-
duces two surfaces whose curvatures are
harmonically related. What Riemann
attributed to Dirichlet, was the principle
that, given a certain boundary condition,
the function that minimizes the action
within it is a complex harmonic function.

Warm up to this idea on the familiar
territory of the catenary. The boundary
conditions here are the positions of the
hanging points. The “interior” of this
boundary is the curve itself. Within the
curve there is a singular point—the low-
est point. If the boundary conditions
change, by changing the positions of the
hanging points, so does the position of
the lowest point. To state Dirichlet’s
principle in this simplified context, the
catenary is the least-action pathway of a
hanging chain with these specified
boundary conditions and singularity. If
the boundary conditions change, the
shape of the curve changes correspond-
ingly, in accordance with the preserva-
tion of the principle of least-action.

Riemann inverted Dirichlet’s princi-
ple: Since the physical principle of least-
action is primary, the positions of the hang-
ing points and the lowest point completely
determine the shape of the chain!

Now, make this same investigation

with respect to a catenoid formed by a
soap film between two circular rings.
This catenoid is a physical least-action, or
minimal surface. Embedded in this sur-
face is an orthogonal set of curves of min-
imal and maximal action. (Riemann later
showed that these curves are harmonical-
ly related.) Experiment by changing the
shape of these boundaries from circles, to
ellipses, to irregular smooth shapes, to
polygons. When you change the position
or shape of the boundaries of this surface,
the shape of the surface and the embed-
ded curves change accordingly, but the
least-action principle is preserved.

Now, generalize this idea with some
other pedagogical examples, illustrated
in the following figures derived from
computer animations. In Figure 8 we
see a set of harmonically related circles
and radial lines that intersect at the cen-
ter of the circles, being transformed
while maintaining their harmonic rela-
tionship. If the position of that intersec-
tion point changes, the radial lines must
be transformed into circular arcs, and
their end-points move along the bound-
ary in order to maintain their harmonic
relationship. This effect is shown as the
point of intersection moves, first away
from the center [Figure 8(a)], then in a
circular path around the center [Figure
8(b)], and then on the path of a lemnis-
cate [Figure 8(c)]. This motion causes all
positions inside the boundary to change
as a whole. What doesn’t change is the
harmonic, i.e., least-action, relationship.

This could also be thought of
inversely: That the changes in position
of the intersection of the radial lines at

the boundary, cause their point of inter-
section to move in a circular arc, and
their form to change from lines to circu-
lar arcs.

Or, infinitesimally small changes in
the curvature of the pathways are deter-
mined by the conditions at the bound-
ary with respect to the position of the
singularity.

Compare this action with the change
in the position of the lowest point of the
catenary as the positions of the hanging
points change, as illustrated in Figure 1.

There, a change in the boundary
points produced a change along a single
curve. Here, a change in the boundary
curve produces a change in a set of har-
monically related curves within a surface.

Compare this with the problem Gauss
confronted in, for example, determining
the location of the Earth’s magnetic poles
from infinitesimally small changes in the
Earth’s magnetic effect. Gauss under-
stood that those small changes were con-
nected to the position of the singularities,
i.e., magnetic poles, of the Earth’s mag-
netic effect. However, the exact location,
or even the number of those poles, was
still unknown in Gauss’s time. On the
basis of the measurements obtained by
von Humboldt’s network, Gauss deter-
mined where those poles must be located.
The famous American Wilkes Expedi-
tion of 1837 was launched, in part, to
confirm Gauss’s findings, which it did.

In Figure 9, this same effect is illus-
trated by moving the focal points along
the path of a circle. Notice again how
this change in the position of the singu-
larity, changes the condition at the
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FIGURE 9. The focal points of harmonically related ellipses and hyperbolas more along the path of a circle.



boundary, so that all the resulting rela-
tionships remain harmonic.

Figure 10 shows the same process,
but the shape of the boundary has been
changed to an ellipse, which corre-
spondingly changes the shape of the
orthogonal curves into hyperbolas, and
the intersection point into two foci. Of
course, it could also be said that the radi-
al lines are changed into hyperbolas,
which changes the circles into ellipses,
and the intersection point into two foci.
Or, that the intersection point is
changed into two foci, which changes
the the boundary into an ellipse, and the
radial lines into hyperbolas.

In short: A physical process of least
action is a connected action. Changing any
aspect of the process, changes everything
else in the process correspondingly, so as to
preserve the least-action characteristic of

the process. It is the physical principle of
least-action that is primary.

It was Riemann’s genius to recognize,
through this application of “Dirichlet’s
Principle,” that the principle of least-
action of a physical process could be
understood completely by the relationship
between the boundary conditions and the
singularities, and that this relationship
could be expressed uniquely by Riemann’s
geometric concept of complex functions.
Moreover, Riemann showed that the
characteristic of least-action of a physical
process could be changed, in a fundamen-
tal way, only by the addition of a new
principle. That change in principle is
expressed in a complex function, as a cor-
responding increase in the number of sin-
gularities. In his Theory of Abelian Func-
tions, Riemann demonstrated this by
applying “Dirichlet’s Principle” to the
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FIGURE 10. A set of doubly 
periodic harmonic curves typical 
of har-monic functions. Here, the
curves are harmonic with respect 
to two boundary principles.

FIGURE 11. Both boundary
conditions of a set of doubly
periodic harmonic curves
undergo a transformation.



higher, transcendental functions of Abel.
The deeper significance of this discov-

ery can only be hinted at in this install-
ment, and will be taken up in more
depth later, but it can be illustrated by the
animation illustrated in Figure 11, which
expresses the principle of least-action
with respect to an elliptical function. Rie-
mann demonstrated that all elliptical
functions, being functions formed by the
interaction of two connected principles,
are expressed in the complex domain as
surfaces with two boundaries (these
boundaries are marked in green) [SEE

inside front cover]. Each boundary
changes differently, but connectedly,
with the other, causing corresponding
changes in the minimal pathways, while
at all times maintaining the overall har-
monic relationship of the function. In
other words, the characteristic curvature
of these least-action pathways is deter-
mined, in this case, by the connected
interaction of two distinct principles.

A comparison of this to the previous
examples indicates what Riemann empha-
sized: That the only way to fundamen-
tally change the characteristic of action
of a physical process, is by the addition of
the action of a new principle. This more
advanced question will be investigated
more thoroughly in future Pedagogicals.

A suggestive example from econom-

ics can help illustrate this principle.
What is the relationship between all
physical-economic relationships, and
the economic boundary conditions of
physical infrastructure and cultural
development? What is the relationship
between these boundary conditions, and
the singularities represented by the
introduction of new technologies?
What is the effect on all economic rela-
tionships, of a change, positive or nega-
tive, in these physical-economic bound-
ary conditions?

Four years after Riemann’s death,
Karl Weierstrass criticized Riemann’s
application of “Dirichlet’s Principle” on
formal mathematical grounds. Weier-
strass contended that it was inappropriate
to speak mathematically of least-action,
unless a formal mathematical proof could
be presented proving that a mathematical
minimum, or maximum, existed. While
it is possible to produce a formal mathe-
matical example which has no minimum,
all physical processes are characterized by
bounded least-action. For example, as
Nicolaus of Cusa showed, there is no
absolute maximum or absolute mini-
mum polygon, because the polygon is
bounded maximally by a circle (which is
not a polygon) and minimally by a line
(which is also not a polygon). Or, while a
mathematical catenary can be extended

into infinity, the physical catenary is
always bounded by the hanging points.
For Riemann, as for Gauss and Dirichlet,
Weierstrass’s demand for a formal math-
ematical proof of a minimum, was less
than unnecessary: It was a sophistry. The
universal physical principle of least-
action was sufficient to supply the proof.

Weierstrass’s critique was seized upon
by the formalists, who were desperate to
roll back the achievements of Kästner,
Gauss, Dirichlet, Jacobi, Abel, Riemann,
et al., and return science to the slavish
days of Euler, Lagrange, and d’Alem-
bert. Consequently, while the form of
Riemann’s discoveries has been widely
discussed, the substance of his thinking
has by and large been suppressed, until it
found new life in the more advanced dis-
coveries of Lyndon LaRouche.

—Bruce Director

1. See, e.g., Bruce Director, “The Long Life
of the Catenary: From Brunelleschi to
LaRouche,” Fidelio, Spring 2003 (Vol. XII,
No. 1).

2. See G.W. Leibniz, “Two Papers on the
Catenary Curve and Logarithmic Curve
(Acta Eruditorum, 1691),” trans.  by
Pierre Beaudry, Fidelio, Spring 2001 (Vol.
X, No. 1).

3. See Bruce Director, Riemann for Anti-
Dummies, Part 53: “Look to the Potential,”
Dec. 21, 2003 (unpublished).
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When Lejeune Dirichlet, at 23 years
of age, worked with Alexander

von Humboldt to make microscopic
measurements of the motions of a sus-
pended bar magnet in a specially-built
hut in Abraham Mendelssohn’s garden,
he could hear, in the nearby summer
house, the Mendelssohn youth move-
ment work through the voicing of J.S.
Bach’s St. Matthew Passion. Felix and
Fanny Mendelssohn, brother and sister
aged 19 and 23, respectively, were the

leaders of a group of 16 friends who
would meet every Saturday night in
1828 to explore this “dead” work,
unperformed since its debut a century
earlier by Bach.1

The two simultaneous projects in the
Mendelssohn garden at Berlin’s 3
Leipziger Strasse are a beautiful exam-
ple of Plato’s Classical education neces-
sary for the leaders of a republic: The
astronomer’s eyes and the musician’s
ears worked in counterpoint, for the

higher purpose of uniquely posing to the
human mind, how the mind itself worked.
As described in the Republic, Book 7,
the paradoxes of each “field”—paradox-
es (such as the “diabolus”) that, consid-
ered separately, tied up in knots the
“professionals” of each—taken together
would triangulate, as it were, for the
future statesman, the type of problems
uniquely designed to properly exercise
the human mind. After all, such a mind
would have to master more than astron-

Part 2

Lejeune Dirichlet and the Mendelssohn 
Youth Movement


