
--� PEDAGOGICAL EXERCISE -- --------

The Long Life of the Catenary: 
From Brunelleschi to LaRouche 

To make the urgently needed shift 

from a consumer society to a pro
ducer one, requires a fundamental 

change in the way people think. The 

mind of the consumer knows the uni

verse only through the objects that stim

ulate the senses, along with the magical 
powers he believes control them. When 

confronted with a crisis, such as the pre
sent one, consumers become frightened. 
They demand action from an increas

ingly impotent priesthood of financial 

advisors and opinion makers who, 
unable to boost consumer confidence, 

fail to produce results. As the crisis 

deepens, suspicions mount that the 
unseen potencies on whom they have 

relied, have either gone deaf, or depart

ed the scene. Their ultimate terror, 

however, is the thought that such mar
ket forces might never have existed; 
thus, the idea of their previous existence 
persists, continuing to govern the 

thoughts and actions of the consuming 

public, and feeding an increasingly 

hopeless pessimism. 

FIGURE 1. Cathedral of Santa Maria del Fiore, Florence, Italy. 

This was the state of affairs in Flo
rence, Italy when, following the collapse 
of the feudalist financial system, nearly 
80 percent of the population perished 
from the Black Death between 1347 and 

1350. The reactions of the population to 

that crisis are aptly described by the Flo
rentine poet Giovanni Boccaccio, in the 

introduction to his Decamero n. His 
countrymen, Boccaccio reports, had fall

en into a state of either austere peni
tence, bacchanalian revelry, or some 

other form of "looking out for 'number 
one' ''; 

"Thus, adhering ever to their inhu

man determination to shun the sick, as 
far as possible, they ordered their life. 
In this extremity of our city's suffering 

and tribulation, the venerable authori

ty of laws, human and divine, was 
abased, and all but totally dissolved for 
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lack of those who should have admin
istered and enforced them, most of 

whom, like the rest of the citizens, 
were either dead, or sick, or so hard
bested for servants that they were 
unable to execute any office, whereby 
every man was free to do what was 
right in his own eyes." 

Seeking to rescue their city, and the 

larger European civilization, from this 

tragedy, a grouping of Florentine lead
ers, in the Christian-Platonic tradition 
of their predecessor Dante Alighieri, 

recognized that the power to overcome 
such catastrophes lay, not in the domain 

of sense certainty and accompanying 

magical powers, but, in the power of the 
human mind to discover and employ the 
truthful principles that govern the uni
verse. To demonstrate that power, they 
resolved to complete the cathedral of 
Santa Maria del Fiore, whose construc

tion had begun nearly three-quarters of 

a century earlier. The plan called for 
construction of a high octagonal drum 

of extremely large diameter-42 
meters-, to be capped by a soaring, 

free-standing dome that would tower 
effortlessly above the city and become 

the focal point of the entire surrounding 
region [SEE Figure 1]. 

When the decision to undertake this 
project was made in 1367, the man who 

would ultimately execute it, Filippo 

Brunelleschi, was not even born; but, 

the intention that would guide him, 

was already embedded in the proposed 

size of the structure, and the require
ments of its design. The dome was to 
be equal in size to the Pantheon in 

Rome, that temple to the magical pow

ers that had dominated Roman popular 

opinion, and under whose authority the 
Emperors had ruled [SEE Figure 2]. 
Ever since its construction in 128 A.D. 

under the Emperor Hadrian, the Pan
theon had been the largest covered 
structure in the world, and, even 

though the Emperors had long ceased 
to rule under its name, the mind-set of 

Click here for Full Issue of Fidelio Volume 12, Number 1, Spring 2003

© 2003 Schiller Institute, Inc. All Rights Reserved. Reproduction in whole or in part without permission strictly prohibited.

http://schillerinstitute.org/fidelio_archive/2003/fidv12n01-2003Sp/index.html


Roman culture which it symbolized, 

persisted in the thoughts of the Euro

pean population, who, in a beast-like 
condition, lived in fearful subjugation 
to a feudalistic oligarchy. 

The Dome (Duomo) was a project of 
bold optimism. Unlike the Pantheon, 
the Florentine Dome was to be beautiful 
from both inside and out; a quality 

intended to counteract the persisting 

pantheonic culture that had brought 

about the calamity from which Europe 
was still reeling. Never before had such 

a large structure been vaulted by a self
supporting and free-standing dome. Its 

towering beauty would demonstrate a 
principle of both science and art, and, as 

such, would transform the entire sur

rounding region, and, through trav
ellers, the entire world. 

The full implications of the princi

ples necessary to construct the Dome 

were not known to its original design
ers; to accomplish the feat, Brunelleschi 
would have to discover, apply, and com
municate a form of the universal princi
ple of least-action, whose further elabo
ration would unfold over the ensuing 
500 years. This process was advanced in 

(a) 

1988, when Lyndon LaRouche visited 

the Dome, and recognized the implica

tions of Brunelleschi's discoveries for the 
subsequent breakthroughs of Gottfried 

Leibniz, Carl Gauss, and Bernhard Rie
mann, and for the future development 
of a new physical science. 1 

The Dome and 

Anti-Euclidean Geometry 

Imagine yourself in 1420, looking at the 
octagonal drum of Santa Maria del 

Fiore, without the dome. What do you 
see? Empty space? If so, you could never 
envision, let alone build, the Dome. The 
construction of the Dome required a 

mastery of principles not visible to the 

eye. Not the invisible, magical powers of 

the Pantheon, but the universal physical 
principles which, though unseen, are 
known clearly through the imagination. 
For the scientist and artist alike, there is 

no such thing as empty space; no empty 
canvas, no blank slate. Indeed, there is a 
manifold of physical principles, charac
terized by a set of relationships whose 
expression ultimately takes the form of a 
work of art. To visualize the unbuilt 
dome, as the artist Brunelleschi would 

(b) 

FIGURE 2. (a) Exterior views of the Pantheon, 
Rome. (b) Interior view of the Pantheon. 

have, imagine the physical principles, 

and the bricks and mortar will assume 

their required form. 

It is on this basis that we can begin to 
construct a physical geometry from the 
standpoint of Brunelleschi, Leibniz, 
Gauss, Riemann, and LaRouche. The 
roots of this physical geometry go back 
to the discoveries, in ancient Greece, of 

Thales, Pythagoras, Archytas, Plato, 
Menaechmus, Archimedes and Eratos
thenes, all of whom-unlike the pre
sentation provided by Euclid's 

Elements-derived the principles of 
geometry from investigations of physi

cal principles, not abstract notions of 
empty space. 

From the time of the murder of 
Archimedes by Roman soldiers in 212 

B.C., European thought had been domi
nated by Aristotle's doctrine that uni

versal principles have no effect on 

earthly affairs, and that knowledge of 

such principles is impossible. Conse
quently, human knowledge could only 
be based upon sense perceptions, or on 
propositions of an abstract geometry 
derived deductively from unprovable 
common axioms and opinions, which 

were separated from the physical world, 
just as, according to Aristotle, the heav

ens were separated from Earth. To 

build the Dome, Brunelleschi had to 
reject Aristoteleanism and return to the 
Platonic tradition of science, which 

understood that the physical world was 

governed by universal physical princi
ples, and that, although unseen, the 

human mind possessed the power to 
discover and employ these principles to 
increase man's power in and over the 
universe. 

Physical Principles vs. Aristotle 

To grasp this, examine some simple 

problems of building construction, in 
which the distinction between the physi

cal principles of universal gravitation, 

and Aristotelean notions of abstract 

geometry, comes to the fore. Start with a 

vertical column, which takes the shape 
of a line. An abstract geometrical line, 
according to Euclid, is that extension in 
empty space which has only length. No 

matter how long the line, its width is 
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always the same, namely, nil. However, 

when building a vertical column (line) 

of bricks, the higher the column, the 

greater the weight (pressure) on the 
lower bricks. To build a taller column 
requires strengthening the lower por
tions of the column, by increasing the 

width at the base, or by some other 

means, such as buttressing the column 
externally. 

Extend this thought to an area. From 

the standpoint of empty Euclidean 

space, an area is that which has length 

and width. A bounded area is enclosed 
by a line, either straight or curved. A 

physical area, however, is enclosed by a 

physical structure, whose shape must be 
determined by physical principles. One 

approach to enclosing a physical area, 
would be to build two vertical columns 
and span those columns with a flat roof. 

This is a relatively weak structure, how
ever, because the roof is only strong 

close to where it is supported by the 

columns. The farther apart the columns 
are, the weaker the roof [SEE Figure 3]. 
A far more stable structure for vaulting 

a vertical area is an arch. 

At first thought, the circle appears to 
be the simplest type of arch, because the 
circular boundary encloses the largest 

area by the least perimeter. A relatively 

stable circular arch can be constructed, if 

the arch is designed so that all the bricks 

point to the center of the circle [SEE Fig

ure 4]. However, while such an arch is 
under construction, it cannot support 
itself, and a temporary scaffolding is 
required to support it. Thus, the arch is 
self-supporting as a whole, but not in its 

parts. 

The circular arch poses another 

problem. Even though it encloses the 
greatest area with the least perimeter, its 
height is a function of its width, and the 
line of pressure does not conform to the 
circular curve [SEE Figure 5]. The only 

way to enclose a taller area, is to widen 

the arch, which in turn decreases the 

overall stability of the structure, because 

the downward pressure from the upper 
bricks pushes the sides of the arch out
ward. Thus, even though, from the 
standpoint of abstract geometry the cir

cle is isoperimetric, from the standpoint 
of physical geometry, some other shape 
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FIGURE 3. Enclosing a vertical area 
with columns and a flat roof The 
roof is strong only close to the 
columns. It is weak in the middle. 

provides a greater stability for a taller 
area. The shape that achieves this is a 
pointed arch, in which the two curves 
that make up the arch are circular arcs 

with different centers [SEE Figure 6(a)]. 

Not only does the pointed arch enclose a 

taller area, but it is more stable, because 

its curvature conforms more closely to 
the physical line of stresses in the struc

ture [Figure 6(b)]. Thus, the shape of a 

building arch cannot be determined by 
abstract geometrical characteristics, but 

rather, by physical ones. 
Brunelleschi had to build more than 

(a) (b) 

FIGURE 4. In a circular arch, the 
brick! all point to center of the semi
cinle. 

FIGURE 5. In a circular arch, the 
downward pull of gravity on the 
bricks does not correspond to the line 
of pressure along the arch. 
Consequently, the top tends to foil 
in, and the sides push out. 

an arch, however; he had to enclose a 
volume. Geometrically, a volume is 

enclosed by a surface, which is produced 

when a curve is moved. For example, 

from the famous construction of Archy

tas, when a circle is moved along a line, 

a cylinder is produced; when rotated 
around a point, a torus is produced; 

FIGURE 6. (a) In a pointed arch, each side is an arc of a circle, but the centers of the 
arcs are different. This makes the pointed al'ch taller than a corresponding circular 
one. (b) In a pointed arch, the downward pull of gravity conforms more closely to the 
line of pressure, distributing the stresses along the arch into the ground. 



when rotated around a line, a sphere is 
produced; and when a triangle is rotated 
around a line, a cone is produced [SEE 

Figure 7]. A dome can be produced by 
rotating an arch, either circular or point
ed, around an axis [SEE Figure 8]. But a 
physical surface such as a dome, is not 
merely the sum of an infinite number of 
rotated arches, because a new set of 
stresses occurs in the dome which do not 
occur in any of the arches. In addition to 
the stresses along the arch (from top to 
bottom, i.e., "longitudinal"), there are 
stresses around the dome ("circumferen
tial" or "hoop"). The problem faced in 
building a dome is, to determine the 
shape that best distributes these different 
stresses according to the principles of 
universal gravitation. 

One solution, a hemispherical dome, 
based on the circular arch, encloses the 
largest volume in the smallest surface 
area. But, like the circular arch, the 
height of the hemispherical dome is a 
function of its width. In order to build 
taller domes, Islamic architects adapted 
the principle of the pointed arch, to 
form a pointed dome. Like the pointed 
arch, the pointed dome not only was 
taller, but was more stable, because it 
distributed the stresses more in the 
direction of the pull of gravity. 

But, no one had ever built a dome the 
size of the one proposed for Brunelleschi. 
Consequently, he had to design a struc
ture whose shape would balance these 
stresses without requiring the external 

(a) 

buttressing that would 
detract from the Dome's 
beauty, and thus lessen its 
effectiveness in changing 
society by elevating the 
minds of the population. 

Brunelleschi faced an 
additional problem. A 

dome, like an arch, gener
ally requires a supporting 
scaffold, or centering, to 
hold it up while under con
struction. Here, Brunel
leschi faced his most formi
dable obstacle. The dome 
proposed for Santa Maria 
del Fiore was so big, it 
exceeded the available 
wood to build the scaffold
ing. Brunelleschi shocked 
all his competitors, by mak
ing the unprecedented pro
posal to build the Dome 
without any centering at 

FIGURE 7. Archytas demonstrated that the solution 
to the problem of doubling the cube, or finding two 
geometric means between two extremes, could be 
solved by the intersection of a cylinder, torus, and 
cone. 

all. This bold step required 
him to design the dome so that it was 
self-supporting in both its whole and its 
parts. Such a shape could not be deter
mined by the methods associated with 
Euclidean geometry; the shape 
Brunelleschi required could only be 
determined by physical principles. 

Constructing the Dome 

Brunelleschi proposed to construct two 
domes, one inside the other, with a stair
way between them. Both would conform 

(b) 

to the pointed arch form called for in the 
original design. However, according to 
the Twentieth-century architect Lando 
Bartoli? the curve of the inner dome was 
based on a circle whose diameter was 
four-fifths the inside diameter of the 
octagonal drum (a "pointed fifth"), 
whereas the curve of the outer dome was 
to be three-fourths the outer diameter (a 
"pointed fourth") [SEE Figure 9]. 

FIGURE 8. (a) A hemispherical dome is formed by rotating a circular arch. (b) A 
point dome is formed by rotating a pointed arch. In physical structures, domes, unlike 
arches, have both longitudinal stresses from top to bottom, and circumferential (or 
hoop) stresses around the domes. 

Since the use of centering had to be 
avoided, Brunelleschi had to control the 
shape of both domes very carefully as 
they were being constructed. This 
entailed controlling three different cur
vatures: the longitudinal curvature; the 
circumferential curvature; and the cur
vature inward towards the center of the 
dome. If all three curvatures could be 
controlled during all phases of construc
tion, not only would the dome be stable 
upon completion, but each stage would 
be stable enough to be a platform from 
which the next stage could be built. This 
meant that the dome had to conform to 
a shape that would be self-supporting in 

both its whole and its parts. 

Each direction of curvature was itself 
determined by another curvature. The 
longitudinal curvature from the lantern 
down to the drum was defined by the 
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FIGURE 9. The plans called for the Dome to be pointed. According to 
the architect Lando Bartoli, the centers of curvature of both the inner 
and outer dome are the same (point N). However, the radius of 
curvature of the inner dome is 4/5 the inner diameter (pointed-fifih) 
while the radius of curvature of the outer dome is 3/4 the outer 
diameter (pointed{ourth). 

FIGURE 10. All the centers of curvature for both the 
inner and outer domes lie on the same circle NN' 

with center 0. (Ground plan by Claudio Rossi, after 
Lando Bartoli.) 

pointed-fifth, pointed-fourth design, as 
expressed by the eight primary (white) 

ribs, and an array of intermediate 
(unseen, embedded) ribs. While each rib 
is a circular arc, the centers of curvature 

of each are different; all the centers lie 

along two circles (one for the inner and 

one for the outer dome) inside the base 
of the drum [SEE Figure 10]. The cir

cumferential curvature was also approx

imately circular, with the diameter of 

each circle diminishing with its height; 
all the centers of curvature of the circles 
lay on a line extending from the center 
of the drum to the lantern. Additionally, 
each course of bricks had to angle 

increasingly inward as the courses 
reached the top [SEE Figure 11]. This 

angle had to be uniform within any 
given course, but changing from course 
to course, at a precise, but non-uniform 
rate. 

Brunelleschi had to solve a multi

tude of problems, each requiring revo

lutionary new ideas. But the discovery 

most central to his success, the one 
most relevant for the future develop
ment of the anti-Euclidean physical 
geometry of Kepler, Fermat, Leibniz, 
Gauss, and Riemann, is the one identi

fied by LaRouche: the principle of the 

catenary. 
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The Principle of the 

Catenary 

A chain hanging freely 

forms a unique shape, 
which, like Brunelleschi's 
Dome, is self-supporting in 

its whole and its parts. This 
can be demonstrated 
experimentally, by hanging 

a chain between two freely 

moving pulleys [SEE Figure 

12]. The chain will find 

only one stable "orbit," or 
trajectory, between the pul
leys, but once in that orbit, 
it will be very stable-a 
characteristic that La
Rouche has likened to the 
principle of "frozen 
motion" exhibited 
Greek classical sculpture. If 

the positions of the pulleys 
are changed, the entire 

FIGURE 11. All the centers of each (approximately 
circular) course of bricks lie on the same line 
runningfrom the lantern through the center of the 
drum. Each course of brick! angles inward at an 
increasingly steep angle. 

chain re-orients itself, so as to assume a 

catenary shape as before. 

While this characteristic was known 

to the ancient Greeks, as well as to 
Brunelleschi, the principles underlying 
it were not fully elaborated until Gott
fried Leibniz and Johann Bernoulli dis

covered them more than a century 
later. Using Leibniz's calculus, they 

demonstrated that the catenary shape 

taken by the chain, was that shape 

which equalized the physical tension at 
every point [SEE Figure 13]. Further
more, Leibniz showed that this physical 

principle corresponded to the elemen

tary transcendental functions: the circu
lar, hyperbolic, and logarithmic [SEE 

Figure 14]. 



Look back at our earlier compari
son of the difference between abstract 
geometrical notions of line, area, and 
volume, and the physical requirements 
of constructing a col umn, arch, and 
dome. As is already implicit in the con
cept of "powers" developed by 
Pythagoras, Archytas , Plato, et al., 
even the geometrical concepts of line, 
area, and volume are ultimately deter
mined by the type of physical princi
ples which Leibniz demonstrated are 
expressed by the catenary. The Aris
totelean opinion that lines, areas, and 
volumes are abstract geometric entities 
separated from the universal physical 
principles that generate them, is as fal
lacious as the belief in the magical 
powers of the Roman pantheon. 

Brunelleschi used a hanging chain to 
guide the development of the curvature 
of the Dome at each stage of construc
tion. As each course of bricks was laid, a 
chain was hung between the intermedi
ate ribs to guide the curvature. Thus, 
the overall sha pe of the Dome was 
determined, not by a curvature defined 
by abstract mathematics, but by a physi
cally defined principle. Just as a hanging 
chain is self-supporting in its whole and 
its parts, the Dome, whose curvature 
was guided by the curvature of the 
hanging chain, is, likewise, a self-sup-

(a) 

porting surface, in its whole and its parts. 
A word of caution is warranted to 

Aristoteleans who demand to "see" the 
physical shape of the catenary in the 
final shape of the Dome. Although 
Brunelleschi employed a form of the 
principle of least-action which Leibniz 
and Bernoulli later discovered was 
expressed by the catenary, the features 
of the Dome are not in the shape of a 
hanging chain. Rather, it is the princi
ple of least-action expressed by the hang
ing chain, as that principle was later 
developed in Gauss's theory of sur
faces, Riemann's theory of manifolds, 
and LaRouche's principles of physical 
economy, which shaped the Dome. 
Writing in "Believing Is Not Necessar
ily Knowing,"3 LaRouche discusses his 
discovery: 

"This connection is illustrated with 
exemplary appropriateness by a case I 

have often referenced since 1988, the les
son to be adduced from Brunelleschi's 
successful construction of the famous 
cupola of the Santa Maria del Fiore 
Cathedral of Florence. I continue to 
emphasize that example, not merely 
because I succeeded, during 1987-88, in 
rediscovering a principle which 
Brunelleschi had used, with his fore
knowledge of its success, in effecting a 
process of construction which had been 

(b) 

FIGURE 12. The catenary is the 
shape formed by a chain of uniform 
thickness hanging under its own 
weight. When a chain is hung on 
pulleys so it can move freely, the 
only curve along which the chain is 

stable will be a catenary. 

thought physically impossible. The prin
ciple he used to secure that success, was 
the same catenary principle which Leib
niz, more than two centuries later, was 
first to identify as the expression of the 
universal principle of physical least 
action. Here, art and science were the 
same principle. The otherwise impossi
ble process of construction so effected, 
was a demonstration of the principle of 
truth expressed equally as a principle of 
truth in the triumph of Christian Pla
tonic science and art, over the false, pan
theonic tradition and symbols of Latin 
Romanticism. 

"Leibniz's principle of least action, 

(c) 

--------��--��B 

FIGURE 13. (a) Bernoulli demonstrated that the curve formed by the hanging chain was determined by physical pl'l·nciples. The 
lowest point of the chain was the singularity aI'ound which the entire chain ol'l'ented (point B). The force exerted by gravity at any 
two points A and C on opposite sides of the lowest point is equivalent to the force exerted by a single weight at point D, equivalent to 
the weight of the chain, suspended between A and C by threads tangent to the catenary at A and C. (b) Bernoulli measured the fOl'ce 
at A and C to be proportional to the sine of the angles formed by the tangents and the vertical line drawn from their point of 
intersection at D. In the drawing, the force at A is proportional to the sine of angle CDC, and the force at C is proportional to the sine 
of angle ADC. (c) Using Leibniz's calculus, Bernoulli demonstrated that the catenary was the curve that maintained the physical 
principle expressed in (a) and (b). Thus, as point A moves horizontally away from the lowest point B, it rises vertically at an 
increasing rate, such that the sines of angles AEL and EAL are proportional. 
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FIGURE 14. Leibniz demonstrated that 
the physical principle discovered by 
Bernoulli was expressed by the 
arithmetic mean between two curves 
which he called "logarithmic." Leibniz 
described the comtruction as follows: 
"Given an indefinite straight line ON 
parallel to the horizon, given also OA, a 
perpendicular segment equal to 03N, 
and on top of 3N, a vertical segment 
3N3 � which has with OA the ratio of 
D to K., find the proportional mean 
1 N1 g (between OA and 3N3 $; then, 
between 1N1 gand 3N3f; then, in turn, 

find the proportional mean between 
IN1 gand OA; as we go on lookingfor 
second proportional meam in this way, 
and from them third proportionals, 
follow the curve 3 g-1 g-A -1 ($ -3 ($ in 
such a way that when you take the 
equal intervals 3N1N, lN�, OleN), 
1(N)3(N), etc., the ordinates 3N3� 
1N1� OA, l(N)l(g), 3(N)3(g), are in 
a continuous geometric progression, 
touching the curve I usually identify as 
logarithmic. So, by taking ON and 
O(N) as equal, elevate over Nand (N) 
the segments NC and (N) (C) equal to 

the semi-sum ofNgand (N)(g), such 
that C and (C) will be two points of the 
catenary curve FCA(C)L, on which 
you can determine geometrically as 

many points as you wish." 

which is the basis for Leibniz's discovery 
of natural logarithms, is expressed by 
the catenary function, which is the phys
ical curve of 'the hanging chain,' caused 

by physical action. This curve was 
reflected in ancient, pre-Roman Classi
cal Greek sculpture as the principle of 
continuing motion caught in a mid
stream moment, as John Keats calls our 
attention to this equivalence of truth 
and beauty in his 'Ode on a Grecian 
Urn.' 

"Once again: Truth is a matter of 
method! In this case, the cupola, truth as 

a method of art, and truth as uniquely a 
method of physical principle for success
ful construction, coincide. To succeed in 
sculpting a figure caught in mid-motion, 
the mind of the sculptor must feel the 
impact of what Leibniz defined as a un i-
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versal physical principle of least action, 

just as Brunelleschi settled upon the use 
of the catenary, in the form of a hanging 
chain, a form of matter in motion even 
when it appears stilled, to enable the 
process of constructing the double wall 

of the cupola. The point was not that the 
finished cupola reflected the catenary 
form, but that the ability to construct 
those walls depended upon the principle 
of action expressed during each and 
every momentary phase of the ongoing 

process of construction of the still yet to 
be completed cupola." 

The beauty of the Dome demon
strates the truth of Brunelleschi's discov

ery, but it would take the discoveries of 
Kepler, Fermat, Leibniz, Gauss, Rie

mann, and LaRouche to fully grasp the 
underlying principle. 

1(N) (N) 

The Development of the 
Physical Idea of Shape 

3(�) 

L 

3(N) 

The success of Brunelleschi's Dome 
demonstrated that the architectural 

principles of physical geometry on 
which it was based, were universal. This 
view was expressed by Johannes Kepler, 
who approximately 150 years later 
wrote, in his Mysterium Cosmograph
icum, concerning the construction of the 
solar system, 

"We perceive how God, like one of 

our own architects, approached the task 
of constructing the universe with order 
and pattern, and laid out the individual 

parts accordingly, as if it were not art 
which imitated Nature, but God himself 
had looked to the mode of building of 

Man who was to be." 
Kepler went on to develop, in that 



work and in his subsequent New 
Astronomy and Harmonies of the World, 
that the shape of the solar system, like 
the Dome, was determined not by con
siderations of abstract mathematics 
(which would have indicated perfectly 
circular orbits), but by physically deter
mined harmonic principles. Thus, the 
elliptical planetary orbits, like 
Brunelleschi's Dome, were the size and 

shape that they had to be in order to 
express the harmonic relationships of 

those physical principles. 
This physically determined idea of 

shape took another step in its development 
with Pierre de Fermat's determination 
that the shape of the pathway of light was 
determined by the principle of shortest-

(a) 

:�� 
o mirror 

time, as he wrote in "Method for Research 
on Maximum and Minimum ": 

"Our demonstration is based on the 
single postulate, that Nature operates by 
the most easy and convenient methods 
and pathways-as it is in this way that 
we think the postulate should be stated, 
and not, as usually is done, by saying 
that Nature always operates by the 
shortest lines .... We do not look for the 

shortest spaces or lines, but rather those 
that can be traversed in the easiest way, 
most conveniently and in the shortest 
time." [SEE Figure 15] 

Leibniz, following up on the dis
coveries of Kepler and Fermat, gener

alized these discoveries as a universal 
principle of least-action in his Discourse 

(b) 

air 

water 

B 

FIGURE 15. (a) When light reflects offa mirror, the angle of incidence AOD and the 

angle of reflection BOE are equal. This makes the pathway of light AOB the shortest 

distance. (b) When light passes from one medium to another, such as air to water, it 

slows down and is refracted (bends), such that the sine of the angle of incidence AOF 

and sine of the angle of refraction BOG are in constant proportion. Fermat showed 

that this pathway AOB is not the shortest distance, but the path of least time. 
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FIGURE 16. The Earth's rotation on its axis causes it to bulge at the equator and 
flatten at the poles, forming an ellipsoidal shape. 

on Metaphysics: 
"[T]he Architect of all things created 

light in such a way that this most beauti
ful result is born from its very nature. 
That is the reason why those who, like 
Descartes, reject the existence of Final 
Causes in Physics, commit a very big 
mistake, to say the least; because aside 
from revealing the wonders of divine 
wisdom, such final causes make us dis
cover a very beautiful principle, along 
with the properties of such things whose 

intimate nature is not yet that clearly 
perceived by us, that we can have the 
power to explain them, and make use of 
their efficient causes, along with their 
artifacts, such as the Creator employed 
them in order to produce their results, 
and to determine their ends. It must be 
further understood from this that the 
meditations of the ancients on such mat
ters are not to be taken lightly, as certain 
people think nowadays." 

From Pathways to Surfaces 

Brunelleschi's Dome points the way to a 
still further development of the univer
sal principle of least-action. Planetary 
orbits, the trajectory of light, and cate
naries, are all pathways, i.e., curves. 
Brunelleschi's Dome is a least-action 
suiface. 

The concepts needed to understand 

the implications of this distinction were 
developed by Gauss who, looking back 
(as we have been doing) on the discover
ies of Kepler, Fermat, and Leibniz, 
developed the foundations of a physical 
theory of surfaces. 

The context for Gauss's discovery was 
his measurement of the surface of the 
Earth, which, because it is physically 
determined, must, in keeping with Leib
niz's principle, be a least-action surface. 

Over a period of more than 20 years, 
Gauss made careful astronomical and 
geodetical measurements of the Earth. 
Abstract geometrical considerations 
would suggest that the Earth would be a 
perfect sphere, because the sphere enclos
es the largest volume inside the smallest 
surface. But, because the Earth is a rotat
ing body in the solar system, its physical 
shape is not spherical, but ellipsoidal [SEE 
Figure 16]. Gauss's measurements, how
ever, determined a discrepancy between 

107 



(a) (b) 

FIGURE 17. To measure the shape of the Earth, geodesists compare changes in 
the angle of inclination of the North Star as seen from different points along the 
same meridian, with the distance measured along the suiface between those same 
points. The angles of inclination of the North Star are measured with respect to 
the pull of gravity. (a) On a sphere, the direction of the pull of fj1'avity is always 
toward the centet· of the sphere, and therefore equal changes in angle correspond 

(c) North 
Pole 

Equator 

-....: ./ 

-----

to equal distances along the surfoce. (b) On an ellipsoid, the direction of the pull of gravity is not always toward the center. 
Consequently, equal changes in angle correspond to different distances along the suiface. (c) By making very precise measurements, 
Gauss showed that the uneven distribution of the Earth's land mass, caused the direction of the pull of gravity to change irregularly 
from place to place. This led him to define the physical geometric shape that is today called the "Geoid." 

the geometrical shape of an ellipsoid, and 
the physical shape of the Earth [SEE Fig
ure 17]. This led him to discover that the 
physical shape of the Earth was not that 
of an ellipsoid, but something more irreg
ular. He identified the "geometrical shape 
of the Earth, as that shape which is every
where perpendicular to the pull of gravi
ty." In other words, Gauss, like Leibniz 
earlier with respect to the catenary, did 
not try to fit the Earth into a shape pulled 
from the textbooks of abstract mathemat
ics; rather, he invented a new geometry 
that conformed to the physical character
istics of the rotating Earth. 

Gauss expanded this discovery into 
an extension of Leibniz's principle of 
least-action. For Gauss, all surfaces had 
a characteristic curvature, which in turn 
determined certain least-action path
ways, which he called "geodesics." For 
example, in a plane, the geodesic is a 
straight-line, whereas on a sphere, the 
geodesic is a great circle. In these two 
cases, the curvature is uniform, and so 
the geodesic is the same everywhere on 
its surface. In contrast, an ellipsoid, for 
example, is a surface of non-uniform 
curvature. Consequently, the geodesic 
differs depending on its direction and 
position on the surface [SEE Figure 18]. 

To illustrate this, the reader is 
encouraged to do some physical experi-

108 

ments. Take a flat piece of paper, a 
sphere, and a spaghetti squash or other 
irregularly shaped object. Mark two 
points at different places on the surface 
and stretch a thread on the surface 
between them, so that it is taut. The 
thread will conform approximately to 
the geodesic between those two points. 
Notice that, whereas on a plane the geo
desic is always a straight line, on a 
sphere it is always a great circle; and, on 
an irregularly shaped squash, the geo
desic changes from place to place, and 
direction to direction. 

There is a further distinction between 
the plane and the sphere or ellipsoid. On 
the plane, there are an infinite number of 
pathways between any two points, but 
only one of these pathways is a geodesic, 

(a) (b) 

i.e., least-action. This is also true on a 
sphere or ellipsoid, except for the case 
when the two points are at the poles; 
then, there are an infinite number of 
geodesics between the two points. The 
bounded nature of the sphere and ellip
soid produces a singularity with respect 
to the nature of the geodesics. 

Gauss investigated the general princi
ples by which the curvature of the surface 
determined the characteristic of the geo
desic. Of immediate relevance for this 
discussion, is Gauss's determination of a 
means to measure the curvature of the 
surface at any point. It is sufficient for 
our purposes here to illustrate this by a 
physical demonstration. Draw a circle on 
the squash, by tying a marker to one end 
of a thread and rotating it, while holding 

FIGURE 18. (a) The geodesic on a sphere is a great circle. (b) The geodesic on an 
ellipsoid varies, depending upon direction and location. 



the other end of the thread in a fixed 
position. The radii of this circle are all 

geodesics in different directions. Now, 
examine the curvature of each geodes

ic-they will vary for each direction. 

There will be one geodesic that is the 

least curved (minimum curvature), and 

another that is the most (maximum cur
vature). Try this a second time, on a dif
ferent type of surface, such as a butternut 

squash shaped like a dumbbell. The 

round ends of the butternut squash have 
the same characteristic as the spaghetti 

squash, in that the center of curvature is 

always inside the squash; but, something 

different happens in the middle part, 

between the ends of the squash. Here, the 

center of curvature may be either inside 

or outside the squash, depending upon 

the direction of the geodesic. Gauss called 
this characteristic "negative curvature"; it 
is the characteristic of curvature 

expressed by a surface formed, for 

instance, by a rotated catenary, which is 
called a catenoid [SEE Figure 19]. 

Gauss proved that on any surface, no 
matter how irregularly it was curved, 

the geodesics of maximum and mini

mum curvature would always be at 

right angles to each other! 

Thus, the curvature of the surface 

expresses a physical principle that in turn 
determines the geodesic, or least-action 
pathway along that surface. In the case of 
Brunelleschi's Dome, it was the overall, 

physically determined shape of the sur-

(a) 

face of the Dome, which determined the 
characteristic curvatures, longitudinally, 

circumferentially, and inward. Yet, while 
under construction, that overall shape

which was yet to be-had to be formed 
from the small changes in the longitudi

nal, circumferential, and inward curva

tures. Brunelleschi's use of the hanging 

chain to guide these changes of curvature 
in the small, expresses the congruence 

between the catenary principle, and the 
least -action characteristics of the Dome. 

From Surfaces to Manifolds 

Working from Gauss's discovery, Bern

hard Riemann generalized the concept 

still further, to the idea of a geodesic 
within a manifold of universal physical 

principles. These manifolds having 

more "dimensions" than surfaces, can
not be directly visualized; but, like sur
faces, their characteristics can be directly 
known by a change in geodesic. 

For example, light under reflection 

and refraction follows a pathway within 
a surface, but either type of action 
expresses a different pathway, because 
the physical manifold of refraction 

includes a principle--changing speed of 

light-that does not exist within the 

manifold of reflection. The addition of 
this new principle to the manifold of 
action, changes the geodesic. Inversely, 

when a change is measured in the geo
desic, it indicates the presence of a new 
physical principle in the manifold. 

(b) 

FIGURE 19. A negatively curved 
suiface is one in which the centers of 
minimum and maximum curvature 
are on different sides of the surface. 
An example of such a suiface is 

formed by rotating a catenary to 
form a "catenoid." 

Riemann developed the means to 
represent these higher manifolds by 

complex functions, which he expressed 

metaphorically as surfaces. For example, 
the conic-section planetary orbits and 
the catenary are both least-action path
ways with respect to the manifold of 

universal gravitation. Each represents a 

geodesic with respect to the manifold of 

universal gravitation. But, this poses a 

paradox: Why does the manifold of uni
versal gravitation express two different 

types of geodesics, conic sections for 
planetary orbits, and catenaries for 
hanging chains? When the catenary 

(c) 

FIGURE 20. Riemann extended Gauss's idea of surfaces to a more general concept of manifold. These manifolds could be investigated, 
by studying the way in which geodesics changed when new principles were added. (a) An orthogonal grid of equally spaced straight
line geodesics of a plane. (b) In the transformation shown, the straight lines have been transformed into an orthogonal grid of circles 
and radii: The equally spaced vertical lines become geometrically spaced circles, and the equally spaced horizontal lines become radii 
separated by equal angles. (c) When Leibniz's concept of the catenary is applied, a network of ellipses and hyperbolas is produced. 
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principle is expressed as a function in 
the Gauss/Riemann complex domain, 

however, the conic section orbits are 
seen as a subsumed geodesic within the 
higher principle represented by the cate
nary [SEE Figure 20 and inside front 

cover]. 
More general examples are illustrat

ed in the accompanying figures [SEE 

Figure 21 and inside front cover]. These 

illustrate how the same action, when 
carried out in different manifolds, is 

changed by the characteristics of the 

manifold. Think of the orthogonal nets 

in each figure as the minimum and 

maximum geodesics in each manifold. 
In each case, the loopy curve maintains 
the same angular orientation with 

respect to these geodesics. But, because 

(a) Arbitrary Shape 

(d) Arbitrary Shape � eZ 

the geodesics change from manifold to 

manifold, the action changes. Thus, a 
change in the principles that determine 
the manifold, changes the geodesics, 
which in turn changes all action within 
that manifold. Inversely, to effect a 
change in any physical action, one must 

act to change the characteristics of the 
manifold in which that action occurs. 

Now look at Brunelleschi's Dome 

from this standpoint. The Dome is a 
surface whose geodesic, in principle, 

conforms to the catenary. As a least
action surface, it expresses a geodesic 

with respect to the principle of universal 
gravitation. With respect to the mani
fold of universal history, building the 
Dome was the geodesic from that dying 
culture of the Roman Empire, to the 

(b) Arbitrary Shape � Z2 

(e) Arbitrary Shape � Catenary 

Fifteenth-century Golden Renaissance. 

At our present place in the manifold 

of universal history, building LaRouche's 
"combat university on wheels" youth 
movement, and making LaRouche Presi
dent of the United States, is for us, 
Brunelleschi's Dome-the geodesic from 
today's looming Dark Age, to a new 
Renaissance that never ends. 

-Bruce Director 
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(c) Arbitrary Shape � Z3 

(f) Arbitrary Shape � + 

FIGURE 21. Examples of Riemann mappings. Here an arbitrary loopy curve is seen with respect to a manifold of changing geodesic. 
The curve maintains the same angle with respect to the geodesics, as the geodesics change from (a) straight-lines, to (b) parabolas, to 
(c) cubic curves, to (d) circles and radii, to (e) ellipses and hyperbolas, to (f) inversions. With each transformation of the manifold, the 
action represented by the curve changes. 
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