
In September 1798, after three years of self-directed
study, Carl Friedrich Gauss, then 21 years old, left

Göttingen University without a diploma, and returned to
his native city of Brunswick to begin the composition of
his Disquisitiones Arithmeticae. Lacking any prospect of
employment, Gauss hoped to continue receiving his stu-
dent stipend, without any assurance that his patron, Carl
Wilhelm Ferdinand, Duke of Brunswick, would oblige.
After several months of living on credit, word came from
the Duke that the stipend would continue, provided

Gauss obtained his doctor of philosophy degree, a task
Gauss thought a distraction, and wished to postpone.

Nevertheless, Gauss took the opportunity to pro-
duce a virtual declaration of independence from the
stifling world of deductive mathematics, in the form of
a written thesis submitted to the faculty of the Univer-
sity of Helmstedt, on a new proof of the fundamental
theorem of algebra. Within months, he was granted
his doctorate without even having to appear for oral
examination.

Describing his intention to his former classmate, Wolf-
gang Bolyai, Gauss wrote, “The title [fundamental theo-
rem] indicates quite definitely the purpose of the essay;
only about a third of the whole, nevertheless, is used for
this purpose; the remainder contains chiefly the history
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and a critique of works on the same subject by other
mathematicians (viz. d’Alembert, Bougainville, Euler, de
Foncenex, Lagrange, and the encyclopedists . . . which lat-
ter, however, will probably not be much pleased), besides
many and varied comments on the shallowness which is
so dominant in our present-day mathematics.”

In essence, Gauss was defending, and extending, a
principle that goes back to Plato, in which only physical
action, not arbitrary assumptions, defines our notion of
magnitude. Like Plato, Gauss recognized that it would
be insufficient to simply state his discovery, unless it were
combined with a polemical attack on the Aristotelean
falsehoods that had become so popular among his con-
temporaries.

Looking back on his dissertation fifty years later, Gauss
said, “The demonstration is presented using expressions
borrowed from the geometry of position; for in this way,
the greatest acuity and simplicity is obtained. Fundamen-
tally, the essential content of the entire argument belongs to
a higher domain, independent from space [i.e., anti-Euclid-
ean–BD], in which abstract general concepts of magni-
tudes, are investigated as combinations of magnitudes con-
nected by continuity: a domain, which, at present, is poorly
developed, and in which one cannot move without the use
of language borrowed from spatial images.”

It is my intention to provide a summary sketch of the
history of this idea, and Gauss’s development of it. It can

not be exhaustive. Rather, it seeks to outline the steps
which should form the basis for oral pedagogical dia-
logues, already underway in various locations.*

Multiply-Extended Magnitude
A physical concept of magnitude was already fully devel-
oped by circles associated with Plato, and expressed most
explicitly in the Meno, Theatetus, and Timaeus dialogues.
Plato and his circle demonstrated this concept, pedagogical-
ly, through the paradoxes that arise when considering the
uniqueness of the five regular solids, and the related prob-
lems of doubling a line, square, and cube. As Plato empha-
sized, each species of action generated a different species of
magnitude. He denoted such species by the Greek word
dunamis, the root of the English “dynamo,” usually trans-
lated into English as “power.” The meaning of the term
dunamis is akin to Leibniz’s use of the German word Kraft.

That is, a linear magnitude has the “power” to double
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FIGURE 1. Doubling and “powers.” (a) The magnitude
which has the “power” to double the length of a line is
produced by simple extension. (b) The magnitude which
has the power to produce a square of double area, is the
diagonal of the smaller square, and is called “the
geometric mean” between the two squares. The
magnitude of diagonal BC is incommensurable with,
and cannot be produced by, the magnitude of side AB of
the smaller square. (c) The magnitude which has the
power to produce a cube of double volume, is different
from the magnitudes which have the power to double a
square, or a line. It is the smaller of two geometric
means between the two cubes. This magnitude is
incommensurable with both lower magnitudes, the
square and the line.

__________
* This set of pedagogical exercises is part of an ongoing series on

“Riemann for Anti-Dummies,” produced for study by members
and friends of the International Caucus of Labor Committees.
Some have been published in New Federalist newspaper. See also
Bruce Director, “The Division of the Circle and Gauss’s Concept of
the Complex Domain,” 21st Century Science & Technology, Winter
2001-2002 (Vol. 14, No. 14).
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a line, whereas only a magnitude of a different species
has the “power” to double a square, and a still different
species has the “power” to double a cube [SEE Figure 1(a)-
(c)]. In Bernhard Riemann’s terminology, these magni-
tudes are called, respectively: simply-extended, doubly-
extended, and triply-extended. Plato’s circle emphasized
that magnitudes of lesser extension lacked the potential
to generate magnitudes of higher extension, creating,
conceptually, a succession of “higher powers.”

Do not think here of the deductive use of the term
“dimension.” While a perfectly good word, “dimension”
in modern usage too often is associated with the Kantian
idea of formal Euclidean space, in which space is consid-
ered as a combination of three, independent, simply-
extended dimensions.

Think, instead, of “physical extension.” A line is pro-
duced by a physical action of simple extension. A surface
may be bounded by lines, but it is not made from lines;
rather, a surface is irreducibly doubly-extended. Similarly,
a volume may be bounded by surfaces, which in turn are
bounded by lines, but it is irreducibly triply-extended.

Thus, a unit line, square, or cube, may all be charac-
terized by the number One, but each One is a species of a
different power.

Plato’s circle also emphasized, that this succession of
magnitudes of higher powers, was generated by a suc-
cession of differing types of action. Specifically, a sim-
ply-extended magnitude was produced from linear
action, doubly-extended magnitudes from circular
action, and triply-extended magnitudes from extended
circular action, such as the rotational actions which pro-

duce a cone, cylinder, or torus. This is presented, peda-
gogically, by Plato in the Meno dialogue, with respect to
doubly-extended magnitudes, and in the Timaeus, with
respect to the uniqueness of the five regular solids, and
the problem of doubling the cube. Plato’s collaborator,
Archytas, demonstrated that the magnitude with which
a cube is doubled, is not generated by circular action,
but from extended circular action, i.e., conic sections
[SEE Figure 2, and inside front cover, this issue].

It fell to Apollonius of Perga (262-200 B.C.) to present
a full exposition of the generation of magnitudes of
higher powers, in his work on Conics. His approach was
to exhaustively investigate the generation of doubly-
and triply-extended magnitudes, which he distin-
guished into plane (circle/line) and solid (ellipse, parabo-
la, hyperbola) loci.

As Abraham Gotthelf Kästner indicates in his History
of Mathematics (1797), the investigation of the relation-
ships among higher powers, gave rise to what became
known by the Arabic root word algebra; and, from Gott-
fried Wilhelm Leibniz (1644-1716) on, as analysis. Here,
the relationship of magnitudes of the second power
(squares) and the third power (cubes) were investigated
in the form of, respectively, quadratic and cubic algebraic
equations. Meanwhile, equations of higher than third
degree took on a formal significance, but lacked the
physical referent visible in quadratics and cubics.

Girolamo Cardan (1501-1576), and later, Leibniz,
showed that there was a “hole” in the totality of forms of
algebraic equations, as indicated by the appearance of the
square roots of negative numbers as solutions to certain

FIGURE 2. Archytas’s
construction for doubling of the
cube. Archytas developed a
construction to find two
geometric means between two
magnitudes, AC and AB.
Magnitude AC is drawn as the
diameter of circle ABC; AB is a
chord of the circle. Using this
circle as the base, generate a
cylinder. The circle is then
rotated 90° about AC, so it is
perpendicular to the plane of
circle ABC; it is then rotated
about point A, to form a torus
with nil diameter. (The
intersection of the torus and the
cylinder produces a curve of

double curvature.) Chord AB
is extended until it intersects
the perpendicular to AC at
point D; this forms triangle
ACD, which lies in plane of
circle ABC, AB, and AC.
Triangle ACD is then rotated
around AC, producing a cone.
The cone, torus, and cylinder,
all intersect at point P. Perpen-
dicular PM is then dropped
from P along the surface of the
cylinder, until it intersects
circle ABC at point M; this
forms right triangle AMP.

Through this construction,
a series of similar right
triangles (only partially

shown) is generated,
which produces the
continued proportion,
AB:AM::AM:AP: :AP:AC.
AM and AP are the two
geometric means between
magnitudes AC and AB. 
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equations. Peering into this “hole,” Leibniz recognized
that algebra could teach nothing about physics; but,
instead, that a general physical principle underlay all
algebraic equations, of whatever power.

Writing in about 1675 to Christiaan Huyghens
(1629-1695) on the square roots of negative numbers,
Leibniz added that he had invented a machine which
produced exactly the required action of this general
physical principle:

It seems that after this instrument, there is almost nothing
more to be desired for the use which algebra can or will be
able to have in mechanics and in practice. It is believable that
this was the aim of the geometry of the ancients (at least that
of Apollonius) and the purpose of loci that he had intro-
duced, because he had recognized that a few lines determine
instantly, what long calculations in numbers could achieve
only after long work capable of discouraging the most firm.

Although he determined the physical action that gen-
erated a succession of higher powers, Leibniz left open
the question of what the physical action was, which pro-
duced the square roots of negative numbers.

Gauss’s Proof of the 
Fundamental Theorem
By the time Gauss left Göttingen, he had already devel-
oped a concept of the physical reality of the square roots
of negative numbers, which he called complex numbers.

Adopting the method of the metaphor of the cave from
Plato’s Republic, Gauss understood his complex numbers
to be shadows reflecting a complex of physical actions
(action acting on action). This complex action reflected a
power greater than the triply-extended action which
characterizes the manifold of visible space.

It was Gauss’s unique contribution, to devise a
metaphor by which to represent these higher forms of
physical action, so that they could be represented, by their
reflections, in the visible domain.

In his 1799 dissertation, Gauss brilliantly chose to
develop his metaphor polemically, on the most vulnerable
flank of his opponents’ algebraic equations. Like Leibniz,
Gauss rejected the deductive approach of investigating
algebraic equations on their own terms, insisting that it
was physical action which determined the characteristics
of the equations.

A simple example will help illustrate the point.
Think of the physical meaning of the equation x2=4. We
all know that x refers to the side of a square whose area
is 4. Thus, 2 is a solution to this equation. Now, think of
the physical meaning of the equation x2=-4. From a for-
mal deductive standpoint, this equation refers to the
side of a square whose area is -4. But, how can a square
have a (negative) area of -4? Formally, the second equa-
tion can be solved by introducing the number 2 √

_
-
_
1, or

2i (where i denotes √
_
-
_
1), which, when squared, equals 

-4. But the question remains, what is the physical mean-
ing of √

_
-
_
1?

One answer is to say that √
_
-
_
1 has no physical meaning,

and thus the equation x2=-4 has no solution. To this,
Euler and Lagrange added the sophistry, richly ridiculed
by Gauss in his dissertation, that the equation x2=-4 has a
solution, but the solution is impossible!

Gauss demonstrated the physical meaning of the √
_
-
_
1,

not in the visible domain of squares, but in the cognitive
domain of the principle of squaring.

This can be illustrated pedagogically, by drawing a
square, whose area we will call 1. Then, draw diagonal A
of that square, and draw a new square, using that diago-
nal as a side. The area of the new square will be 2. Now,
repeat this action, to generate a square, whose area is 4
[SEE Figure 3].

What is the principle of squaring illustrated here?
The action that generated the magnitude which pro-
duced the square whose area is 2, was a rotation of 45°
and an extension of length from 1, the side of the first
square, to √

__
2, its diagonal, which becomes the side of the

next square. To produce the square whose area is 4, the
45° rotation was doubled to 90°, and the extension was
squared to become 2. Repeat this process several times, to
illustrate that the principle of squaring can be thought of

FIGURE 3. The principle of “squaring” involves doubling
the angle of rotation and squaring the length. Angle b is
double angle a, and angle g is double angle b. Also, the
length of B is the square of A, and the length of C is the
square of B.
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as the combined physical action of doubling a rotation,
and squaring a length. The square root is simply the
reverse action, that is, halving the angle of rotation, and
decreasing the length by the square root.

Now, draw circle N and a diameter, and apply this
physical action of squaring to every point on the circle.
That is, take any point on the circumference of the circle
(point z in the figure). Draw the radius connecting that
point to the center of the circle. That radius makes an
angle with the diameter you drew. To “square” that
point, double angle a between the radius and the diame-
ter to form angle b, and square the length. Repeat this
action with several points. Soon you will be able to see
that all the points on the first circle map to points on a
larger, concentric circle, whose radius is the square of the
radius of the original circle. But, it gets curiouser and
curiouser. Since you double the angle each time you
square a point, the original circle will map onto the
“squared” circle twice [SEE Figure 4].

There is a physical example that illustrates this
process. Take a bar magnet and rotate a compass around
the magnet. As the compass moves from the North to the
South pole of the magnet (180°), the compass needle will
make one complete revolution (360°). As it moves from
the South pole back to the North, the needle will make
another complete revolution. In effect, the bar magnet
“squares” the compass! 

Gauss associated his complex numbers with this type
of compound physical action (rotation combined with
extension). He made them visible, metaphorically, as spi-

ral action projected onto a surface. Every point on that
surface represents a complex number. Each number
denotes a unique combination of rotation and extension.
The point of origin of the action ultimately refers to a
physical singularity, such as the lowest point of the cate-
nary, or the poles of the rotating Earth, or the center of
the bar magnet.

Using the above example, consider the original circle
to be a unit circle in the complex domain. The center of
the circle is the origin, denoted by O, the ends of the
diameter are denoted by 1 and -1. The square root of -1 is
found by halving the rotation between 1 and -1, and
reducing the radius by the square root. Think carefully,
and you will see that √

_
-
_
1 and - √

_
-
_
1 are represented by the

points on the circumference which are half-way between
1 and -1 [SEE Figure 5].

Gauss demonstrated that all algebraic powers, of any
degree, when projected onto his complex domain, could
be represented by an action similar to that just demon-
strated for squaring. For example, the action of cubing a
complex number is accomplished by tripling the angle of
rotation and cubing the length. This maps the original
circle three times onto a circle whose radius is the cube of
the original circle. The action associated with the bi-
quadratic power (fourth degree), involves quadrupling
the angle of rotation and squaring the square of the
length. This will map the original circle four times onto a
circle whose radius is increased by the square of the
square, and so forth for the all higher powers.

Thus, even though the manifolds of action associated
with these higher powers exist outside the triply-extend-
ed manifold of visible space, the characteristic of action
which produces them was brought into view by Gauss in
his complex domain.

FIGURE 4. Squaring a complex number. The general
principle of “squaring” can be carried out on a circle. z2 is
produced from z by doubling the angle a and squaring the
distance from the center of the circle to z.

FIGURE 5. The unit of action in Gauss’s complex domain.
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When Carl Friedrich Gauss, writing to Wolfgang
Bolyai in 1798, criticized the state of contempo-

rary mathematics for its “shallowness,” he was speaking
literally; and not only about his time, but also ours.
Then, as now, it had become popular for the academics
to ignore, and even ridicule, any effort to search for uni-
versal physical principles, restricting instead the
province of scientific inquiry to the seemingly more
practical task, of describing only what is visible on the
surface. Ironically, as Gauss demonstrated in his 1799
doctoral dissertation on the fundamental theorem of
algebra, what’s on the surface is revealed, only if one
knows what’s underneath.

Gauss’s method was an ancient one, made famous in
Plato’s metaphor of the cave, and given new potency by
Johannes Kepler’s application of Nicolaus of Cusa’s
method of Learned Ignorance. For them, the task of the
scientist was to bring into view the underlying physical
principles, which can not be viewed directly—the unseen
that guided the seen.

Take the illustrative case of Fermat’s discovery of the
principle, that refracted light follows the path of least
time, rather than the path of least distance followed by
reflected light. The principle of least distance is one that
lies on the surface, and can be demonstrated in the visi-
ble domain. On the other hand, the principle of least
time exists “behind,” so to speak, the visible; it is
brought into view only in the mind. On further reflec-
tion, it is clear that the principle of least time was there
all along, controlling, invisibly, the principle of least dis-
tance. In Plato’s terms of reference, the principle of least
time is of a “higher power” than the principle of least
distance.

Fermat’s discovery is a useful reference point for
grasping Gauss’s concept of the complex domain. As
Gauss himself stated unequivocally, the complex domain
does not mean the formal, superficial concept of “impos-
sible” or imaginary numbers, as developed by Euler and
taught by “experts” ever since. Rather, Gauss’s concept of
the complex domain, like Fermat’s principle of least time,
brings to the surface a principle that was there all along,
but hidden from view.

The Algebraic and the Transcendental
As Gauss emphasized in his jubilee re-working of his 1799
dissertation, the concept of the complex domain is a “high-
er domain,” independent of all a priori concepts of space.
Yet, it is a domain “in which one cannot move without the
use of language borrowed from spatial images.”

The issue for him, as for Gottfried Leibniz, was to
find a general principle that characterized what had
become known as “algebraic” magnitudes. These magni-
tudes, associated initially with the extension of lines,
squares, and cubes, all fell under Plato’s concept of
dunamis, or power.

Leibniz had shown, that while the domain of all “alge-
braic” magnitudes consisted of a succession of higher
powers, this entire algebraic domain was itself dominated
by a domain of a still higher power, which Leibniz called
“transcendental.” The relationship of the lower domain
of algebraic magnitudes, to the higher, non-algebraic
domain of transcendental magnitudes, is reflected in
what Jakob Bernoulli discovered about the equi-angular
spiral [SEE Figure 6].

Leibniz, with Jakob’s brother Johann Bernoulli, subse-
quently demonstrated that this higher, transcendental
domain does not exist as a purely abstract principle, but
originates in the physical action of a hanging chain,
whose geometric shape Christiaan Huyghens called a
catenary [SEE Figure 7]. Thus, the physical universe itself
demonstrates that the “algebraic” magnitudes associated
with extension, are not generated by extension. Rather, the
algebraic magnitudes are generated from a physical prin-
ciple that exists beyond simple extension, in the higher,
transcendental domain.

Gauss, in his proofs of the fundamental theorem of
algebra, showed that even though this transcendental
physical principle was outside the domain of the visi-
ble, it nevertheless “cast a shadow” which could be

FIGURE 6. A succession of algebraic powers is generated by
a self-similar spiral. For equal areas of rotation, the lengths
of the corresponding radii are increased to the next power.

II. Bringing the Invisible to the Surface



made visible in what Gauss called the complex
domain.

As indicated in Part I, the discovery of a general prin-
ciple for algebraic magnitudes was found, by looking
through the “hole” represented by the square roots of
negative numbers. These square roots appeared as solu-
tions to algebraic equations, but lacked any apparent
physical meaning. For example, in the algebraic equation
x2=4, x signifies the side of a square whose area is 4;
whereas, in the equation x2=-4, x signifies the side of a
square whose area is -4, an apparent impossibility.

For the first case, it is simple to see that a line whose
length is 2, would be the side of the square whose area is
4. However, from the standpoint of the algebraic equa-

tion, a line whose length is -2, also produces the desired
square of area 4. At first glance, a line whose length is -2
seems as impossible as a square whose area is -4. Yet, if
you draw a square of area 2, you will see that there are
two diagonals, both of which have the power to produce
a new square whose area is 4. These two magnitudes are
distinguished from one another only by their direction, so
one is denoted as 2, and the other as -2.

Now, extend this investigation to the cube. In the
algebraic equation x3=8, there appears to be only one
number, 2, which satisfies the equation, and this num-
ber signifies the length of the edge of a cube whose vol-
ume is 8. This appears to be the only solution to this
equation, since (-2)(-2)(-2)=-8, another seeming impos-

“Given an indefinite straight line ON
parallel to the horizon, given also OA, a
perpendicular segment equal to O3N, and
on top of 3N, a vertical segment 3N3j,
which has with OA the ratio of D to K,
find the proportional mean 1N1j
(between OA and 3N3j); then, between
1N1j and 3N3j; then, in turn, find the
proportional mean between 1N1j and

OA; as we go on looking for second
proportional means in this way, and from
them third proportionals, follow the curve
3j-1j-A-1(j)-3(j) in such a way that
when you take the equal intervals 3N1N,
1NO, O1(N), 1(N)3(N), etc., the
ordinates 3N3j, 1N1j, OA, 1(N)1(j),
3(N)3(j), are in a continuous geometric
progression, touching the curve I usually

identify as logarithmic. So, by taking ON
and O(N) as equal, elevate over N and
(N) the segments NC and (N)(C) equal
to the semi-sum of Nj and (N)(j), such
that C and (C) will be two points of the
catenary curve FCA(C)L, on which you
can determine geometrically as many
points as you wish.

“Conversely, if the catenary curve is
physically constructed, by suspending a
string, or a chain, you can construct from
it as many proportional means as you
wish, and find the logarithms of numbers,
or the numbers of logarithms. If you are
looking for the logarithm of number Ov,
that is to say, the logarithm of the ratio
between OA and Ov, the one of OA
(which I choose as the unit, and which I
will also call parameter) being considered
equal to zero, you must take the third
proportional Oc from Ov and OA; then,
choose the abscissa as the semi-sum of OB
from Ov and Oc, the corresponding
ordinate BC or ON on the catenary will
be the sought-for logarithm
corresponding to the proposed number.
And reciprocally, if the logarithm ON is
given, you must take the double of the
vertical segment NC dropped from the
catenary, and cut it into two segments
whose proportional mean should be equal
to OA, which is the given unity (it is
child’s play); the two segments will be the
sought-for numbers, one larger, the other
smaller, than 1, corresponding to the
proposed logarithm.”

—from G.W. Leibniz, “Two Papers on
the Catenary Curve and Logarithmic

Curve,” from “Acta Eruditorum” (1691)
[Fidelio, Spring 2001 (Vol X, No. 1)].
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FIGURE 7. Leibniz’s construction of the
algebraic powers from the hanging chain,
or catenary curve.
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sibility. The anomaly, that there are two solutions in the
case of a quadratic equation, seems to disappear in the
case of the cube, for which there appears to be only one
solution.

Trisecting an Angle
But, not so fast. Look at another geometrical problem
which, when stated in algebraic terms, poses the same
paradox: the trisection of an arbitrary angle. Like the dou-

bling of the cube, Greek geometers could not find a means
for trisecting an arbitrary angle, from the principle of cir-
cular action itself. The several methods discovered (by
Archimedes, Eratosthenes, and others) to find a general
principle of trisecting an angle, were similar to those found
by Plato’s collaborators, for doubling the cube. That is, this
magnitude could not be constructed using only a circle and
a straight line, but it required the use of extended circular
action, such as conical action. But, trisecting an arbitrary
angle presents another type of paradox which is not so evi-
dent in the problem of doubling the cube. To illustrate this,
perform the following experiment:

Draw a circle [SEE Figure 8]. For ease of illustration,
mark off an angle of 60°. It is clear that an angle of 20°
will trisect this angle. Now add an entire circular rotation
to the 60° angle, making an angle of 420°. It appears
these two angles, 60° and 420°, are essentially the same.
But, when 420° is divided by 3, we get an angle of 140°.
Add another 360° rotation, and we get to the angle of
780°, which appears to be exactly the same as the angles
of 60° and 420°. Yet, when we divide 780° by 3 we get
260°. Keep this up, and you will see that the same pattern
is repeated over and over again.

Looked at as a “sense certainty,” the 60° angle can be
trisected by only one angle, the 20° angle. Yet, when
looked at beyond sense certainty, there are clearly three
angles that “solve” the problem.

This illustrates another “hole” in the algebraic deter-
mination of magnitude. In the case of quadratic equa-
tions, there seem to be two solutions to each problem. In
some cases, such as x2=4, those solutions seem to have a

FIGURE 9. In (a), the lengths of the radii are squared as the angle of rotation doubles. In (b), the lengths of the radii are cubed as the
angle of rotation triples.

FIGURE 8 An example of the three solutions to the trisection
of an angle.

(a) (b)
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visible existence; whereas for the case x2=-4, there are
two solutions, 2√

_
-
_
1 and -2√

_
-
_
1, both of which seem to be

“imaginary,” having no physical meaning. In the case of
cubic equations, sometimes there are three visible solu-
tions, such as in the case of trisecting an angle. But in the
case of doubling the cube, there appears to be only one
visible solution, but two “imaginary” solutions: 
- 1 - (√

__
3)(√

_
-
_
1); and -1+ (√

__
3)(√

_
-
_
1).

Bi-quadratic equations, such as x4=16, which seem to
have no visible meaning themselves, have four solutions,
two “real” (2 and -2) and two “imaginary” (2√

_
-
_
1 and 

-2√
_
-
_
1).

Things get even more confused for algebraic magni-
tudes of still higher powers. This anomaly poses the
question resolved by Gauss in his proof of what he called
the “fundamental theorem” of algebra: How many solu-
tions are there for any given algebraic equation?

The “shallow”-minded mathematicians of Gauss’s
day, such as Euler, Lagrange, and D’Alembert, took the
superficial approach of answering, that an algebraic
equation will have as many solutions as it has powers,
even though some of those solutions might be “impossi-
ble,” such as the square roots of negative numbers. (This
sophist’s argument is analogous to saying, “There is a dif-
ference between man and beast; but this difference is
meaningless.”)

Shadows of Shadows: 
The Complex Domain
Gauss, in his 1799 dissertation, polemically exposed this
fraud for the sophistry it was: “If someone would say a
rectilinear equilateral right triangle is impossible, there
will be nobody to deny that. But, if he intended to consid-
er such an impossible triangle as a new species of trian-
gles and to apply to it other qualities of triangles, would
anyone refrain from laughing? That would be playing
with words, or rather, misusing them.”

For Gauss, no magnitude could be admitted, unless its
principle of generation were demonstrated. For magni-
tudes associated with the square roots of negative num-
bers, that principle was the complex physical action of
rotation combined with extension. Gauss called the magni-
tudes generated by this complex action, “complex num-
bers.” Each complex number denoted a quantity of com-
bined rotational and extended action.

The unit of action in Gauss’s complex domain is a cir-
cle, which is one rotation, with an extension of one (unit
length). In this domain, the number 1 signifies one com-
plete rotation; -1, half a rotation; √

_
-
_
1, one-fourth of a

rotation; and -√
_
-
_
1, three-fourths of a rotation [Figure 5].

These “shadows of shadows,” as he called them, were

only a visible reflection of a still higher type of action, which
was independent of all visible concepts of space. These high-
er forms of action, although invisible, could nevertheless be
brought into view as a projection onto a surface.

Gauss’s approach is consistent with that employed by
the circles of Plato’s Academy. In ancient Greek, the word
for surface, epiphaneia (it is the root of the English word
“epiphany”), can be understood to mean the concept, “that
on which something is brought into view.”

From this standpoint, Gauss demonstrated, in his 1799
dissertation, that the fundamental principle of generation
of any algebraic equation, of no matter what power,
could be brought into view, “epiphanied,” so to speak, as
a surface in the complex domain. These surfaces were
visible representations not—as in the cases of lines,
squares, and cubes—of what the powers produced, but of
the principle that produced the powers.

To construct these surfaces, Gauss went outside the
simple visible representation of powers—such as squares
and cubes—by seeking a more general form of powers, as
exhibited in the equi-angular spiral [SEE Figure 9]. Here,
the generation of a power, corresponds to the extension
produced by an angular change. The generation of square
powers, for example, corresponds to the extension that
results from a doubling of the angle of rotation, within the
spiral [Figure 9(a)]; and the generation of cubed powers
corresponds to the extension that results from tripling the
angle of rotation, within that spiral [Figure 9(b)]. Thus, it
is the principle of squaring that produces square magni-
tudes, and the principle of cubing that produces cubics.

In Figure 10, the complex number z is “squared”
when the angle of rotation is doubled from x to 2x, and
the length squared from A to A2. In doing this, the small-
er circle maps twice onto the larger, “squared” circle, as

FIGURE 10. Squaring a complex number.
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FIGURE 13. Variations of the sine and cosine from the squaring of a complex number, for four quadrants, as angle x rotates 
from 0° to 360°.

FIGURE 12. The sine of angle x is the line Pz, and the cosine
of x is OP. The sine of 2x is the line P′Q, and the cosine is OP′.

(a) (b)

(d)(c)

FIGURE 11. Cubing a complex number.
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we showed in Part I. In Figure 11, the same principle is
illustrated with respect to cubing. Here the angle x is
tripled to 3x, and the length A is cubed to A3. In this case,
the smaller circle maps three times onto the larger,
“cubed” circle. And so on for the higher powers. The
fourth power maps the smaller circle four times onto the
larger. The fifth power, five times, and so forth.

This gives a general principle that determines all alge-
braic powers. From this standpoint, all powers are reflected
by the same action. The only thing that changes with each
power, is the number of times that action occurs. Thus,
each power is distinguished from the others, not by a par-
ticular magnitude, but by a topological characteristic.

In his doctoral dissertation, Gauss used this principle to
generate surfaces that expressed the essential characteristic
of powers in an even more fundamental way. Each rota-
tion and extension produced a characteristic right trian-
gle. The vertical leg of that triangle is the sine, and the
horizontal leg of that triangle is the cosine [SEE Figure 12].
There is a cyclical relationship between the sine and
cosine, which is a function of the angle of rotation. When
the angle is 0, the sine is 0, and the cosine is 1. When the
angle is 90°, the sine is 1, and the cosine is 0. Looking at
this relationship for an entire rotation, the sine goes from
0, to 1, to 0, to -1,and back to 0; while the cosine goes from
1, to 0, to -1, to 0, and back to 1 [SEE Figure 13].

In Figure 13, as z moves from 0 to 90°, the sine of the
angle varies from 0 to 1; but at the same time, the angle
for z2 goes from 0 to 180°, and the sine of z2 varies from 0
to 1, and back to 0. Then, as z moves from 90° to 180°,
the sine varies from 1 back to 0, but the angle for z2 has
moved from 180° to 360°, and its sine has varied from 0,
to -1, to 0. Thus, in one half rotation for z, the sine of z2

has varied from 0, to 1, to 0, to -1, to 0.
In his doctoral dissertation, Gauss represented this com-

plex of actions as a surface [SEE Figures 14, 15, and 16, and
inside back cover, this issue]. Each point on the surface is
determined such that its height above the flat plane, is
equal to the distance from the center, times the sine of the
angle of rotation, as that angle is increased by the effect of
the power. In other words, the power of any point in the
flat plane, is represented by the height of the surface above
that point. Thus, as the numbers on the flat surface move
outward from the center, the surface grows higher accord-
ing to the power. At the same time, as the numbers rotate
around the center, the sine will pass from positive to nega-
tive. Since the numbers on the surface are the powers of
the numbers on the flat plane, the number of times the sine
will change from positive to negative, depends on how
much the power multiplies the angle (double for square
powers, triple for cubics, etc.). Therefore, each surface will
have as many “humps” as the equation has dimensions.

FIGURE 14. A Gaussian surface for the second power. FIGURE 15. A Gaussian surface for the third power.



Consequently, a quadratic equation will have two
“humps” up, and two “humps” down [Figure 14]. A cubic
equation will have three “humps” up, and three “humps”
down [Figure 15]. A fourth-degree equation will have four
“humps” in each direction [Figure 16]; and so on.

Gauss specified the construction of two surfaces for
each algebraic equation, one based on the variations of
the sine and the other based on the variations of the
cosine [SEE Figure 17]. Each of these surfaces will define
definite curves on the flat plane intersected by the sur-
faces [SEE Figure 18]. The number of curves will depend
on the number of “humps,” which in turn depend on the
highest power. 

Since sine and cosine surfaces are rotated 90° to each
other, the curves on the flat plane will intersect each other,
and the number of intersections will correspond to the
number of powers. If the flat plane is considered to be zero,
these intersections will correspond to the solutions, or
“roots” of the equation. This proves that an algebraic equa-
tion has as many roots as its highest power [Figure 18].

The Principle of Powers
Step back and look at this work. These surfaces were
produced, not from visible squares or cubes, but from the
general principle of squaring, cubing, and higher powers.
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FIGURE 17. (a) Combines the surfaces that are based on the variations of the sine and cosine for the second power. (b) Combines the
surfaces that are based on the variations of the sine and cosine for the third power.

(a) (b)

FIGURE 16. A Gaussian surface for the fourth power.



Lyndon H. LaRouche, Jr. responds to a question on educa-
tion reform sent to his Presidential campaign website.

* * *

Sometimes, even often, perhaps, the best way to attack
an apparently nebulous subject-matter, such as today’s

animal-training of students to appear to pass standard-
ized designs of tests, is to flank the apparent issue, in
order to get to the deeper, underlying issues which the
apparent subject-matter merely symptomizes. I respond
accordingly.

There is a growing number of persons, chiefly univer-
sity students, who have become active in our work here,

and who represent special educational needs and con-
cerns. These concerns include the insult of being subject-
ed to virtually information-packed, but knowledge-free,
and very high-priced education. More significant, is
being deprived of access to the kind of knowledge to
which they ought to have access as a matter of right. In
various sessions in which they have tackled me in concen-
trations of one to several score individuals each, many of
the topics posed add up to a challenge to me: “What are
you going to do to give us a real education?” There is
nothing unjust in that demand; I welcome it. However,
delivering the product in a relatively short time, is a bit of
a challenge.
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FIGURE 18. Number of roots to algebraic equations. (a) Intersection of the surfaces for the second power [Fig. 17 (a)] with the flat
plane. (b) Intersection of the surfaces for the third power [Fig. 17 (b)] with the flat plane.

They represent, metaphorically, a principle that manifests
itself physically, but cannot be seen. By projecting this
principle—the general form of Plato’s powers—onto
these complex surfaces, Gauss has brought the invisible
into view, and made intelligible what is incomprehensible
in the superficial world of algebraic formalism.

The effort to make intelligible the implications of the
complex domain, was a focus for Gauss throughout his
life. Writing to his friend Hansen on Dec. 11, 1825,
Gauss said: 

These investigations lead deeply into many others, I
would even say, into the Metaphysics of the theory of
space, and it is only with great difficulty that I can tear
myself away from the results that spring from it, as, for
example, the true metaphysics of negative and complex
numbers. The true sense of the square root of -1 stands
before my mind fully alive, but it becomes very difficult
to put it in words; I am always only able to give a vague
image that floats in the air.

It was here, that Bernhard Riemann began.

(a) (b)

A F T E RW O R D
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I have supplied some extensive answers to that sort of
question, but let me reply to your question by focussing
upon what I have chosen as the cutting-edge of the pack-
age I have presented.

In the same period he was completing his Disquisi-
tiones Arithmeticae, young Carl Gauss presented the
first of his several presentations of his discovery of the
fundamental theorem of algebra. In the first of these
he detailed the fact that his discovery of the definition
and deeper meaning of the complex domain provided
a comprehensive refutation of the anti-Leibniz doc-
trine of “imaginary numbers” which had been circulat-
ed by Euler and Lagrange. Gauss, working from the
standpoint of the most creative of his Göttingen pro-
fessors, Kästner, successfully attacked the problem of
showing the folly of Euler’s and Lagrange’s work, and
gave us both the modern notion of the complex
domain, as well as laying the basis for the integration
of the contributions of both Gauss and Dirichlet under
the umbrella of Riemann’s original development of a
true anti-Euclidean (rather than merely non-Euclid-
ean) geometry.

In his later writings on the subject of the fundamen-
tal theorem, Gauss was usually far more cautious
about attacking the reductionist school of Euler,
Lagrange, and Cauchy, until near the end of his life,
when he elected to make reference to his youthful dis-
coveries of anti-Euclidean geometry. Therefore, it is
indispensable to read his later writings on the subject
of the fundamental theorem in light of the first. From
that point of view, the consistency of his underlying
argument in all cases, is clear, and also the connection
which Riemann cites in his own habilitation disserta-
tion is also clarified.

The Central Issue of Method
Now, on background. Over the past decades of arguing,
teaching, and writing on the subject of scientific
method, I have struggled to devise the optimal peda-
gogy for providing students and others with a more
concise set of cognitive exercises by means of which they
might come to grips with the central issue of method
more quickly. I have included the work of Plato and his
followers in his Academy, through Eratosthenes, and
moderns such as Brunelleschi, Cusa, Pacioli, Leonardo,
Kepler, Fermat, Huyghens, Bernoulli, and Leibniz,
among others of that same anti-reductionist current in
science. All that I can see in retrospect as sound peda-
gogy, but not yet adequate for the needs of the broad
range of specialist interest of the young people to whom

I have referred. I needed something still more concise,
which would establish the crucial working-point at
issue in the most efficient way, an approach which
would meet the needs of such a wide range of students
and the like. My recent decision, developed in concert
with a team of my collaborators on this specific matter,
has been to pivot an approach to a general policy for sec-
ondary and university undergraduate education in
physical science, on the case of Gauss’s first presentation
of his fundamental theorem.

Göttingen’s Leipzig-rooted Abraham Kästner, was a
universal genius, the leading defender of the work of
Leibniz and J.S. Bach, and a key figure in that all-sided
development of the German Classic typified by Käst-
ner’s own Lessing, Lessing’s collaborator against Euler
et al., Moses Mendelssohn, and such followers of theirs
as Goethe, Schiller, and of Wolfgang Mozart,
Beethoven, Schubert, the Humboldt brothers, and Ger-
hard Scharnhorst. On account of his genius, Kästner
was defamed by the reductionist circles of Euler,
Lagrange, Laplace, Cauchy, Poisson, et al., to such a
degree that plainly fraudulent libels against him became
almost an article of religious faith among reductionists
even in his lifetime, down to modern scholars who pass
on those frauds as eternal verities to the present time.
Among the crucial contributions of Kästner to all subse-
quent physical science, was his originating the notion of
an explicitly anti-Euclidean conception of mathematics
to such followers as his student the young Carl Gauss.
Gauss’s first publication of his own discovery of the fun-
damental theorem of algebra, makes all of these connec-
tions and their presently continued leading relevance
for science clear.

Platonic vs. Reductionist Traditions
This shift in my tactics has the following crucial features.

The crucial issue of science and science education in
European civilization, from the time of Pythagoras and
Plato, until the present, has been the division between
the Platonic and reductionist traditions. The former as
typified for modern science by Cusa’s original defini-
tion of modern experimental principles, and such fol-
lowers of Cusa as Pacioli, Leonardo, Gilbert, Kepler,
Fermat, et al. The reductionists, typified by the Aris-
toteleans (such as Ptolemy, Copernicus, and Brahe), the
empiricists (Sarpi, Galileo, et al., through Euler and
Lagrange, and beyond), the “critical school” of neo-
Aristotelean empiricists (Kant, Hegel), the positivists,
and the existentialists. This division is otherwise
expressed as the conflict between reductionism in the



guise of the effort to derive physics from “ivory tower”
mathematics, as opposed to the methods of (for exam-
ple) Kepler, Leibniz, Gauss, and Riemann, to derive
mathematics, as a tool of physical science, from experi-
mental physics.

The pedagogical challenge which the students’
demands presented to me and to such collaborators in
this as Dr. Jonathan Tennenbaum and Mr. Bruce Direc-
tor, has been to express these issues in the most concise,
experimentally grounded way. All of Gauss’s principal
work points in the needed direction. The cornerstone of
all Gauss’s greatest contributions to physical science and
mathematics is expressed by the science-historical issues
embedded in Gauss’s first presentation of his discovery of
the fundamental theorem of algebra.

All reductionist methods in consistent mathematical
practice depend upon the assumption of the existence of
certain kinds of definitions, axioms, and postulates,
which are taught as “self-evident,” a claim chiefly
premised on the assumption that they are derived from
the essential nature of blind faith in sense-certainty itself.
For as far back in the history of this matter as we know it
today, the only coherent form of contrary method is that
associated with the term “the method of hypothesis,” as
that method is best typified in the most general way by
the collection of Plato’s Socratic dialogues. The cases of
the Meno, the Theatetus, and the Timaeus, most neatly
typify those issues of method as they pertain immediately
to matters of the relationship between mathematics and
physical science. The setting forth of the principles of an
experimental scientific method based upon that method
of hypothesis, was introduced by Nicolaus of Cusa, in a
series of writings beginning with his De Docta Ignorantia.
The modern Platonic current in physical science and
mathematics, is derived axiomatically from the reading
of Platonic method introduced by Cusa. The first suc-
cessful attempt at a comprehensive mathematical physics
based upon these principles of a method of physical sci-
ence, is the work of Kepler.

From the beginning, as since the dialogues of Plato,
scientific method has been premised upon the demon-
stration that the formalist interpretation of reality breaks
down, fatally, when the use of that interpretation is con-
fronted by certain empirically well-defined ontological
paradoxes, as typified by the case of the original discovery
of universal gravitation by Kepler, as reported in his 1609
The New Astronomy. The only true solution to such para-
doxes occurs in the form of the generation of an hypothe-
sis, an hypothesis of the quality which overturns some
existing definitions, axioms, and postulates, and also
introduces hypothetical new universal principles. The

validation of such hypotheses, by appropriately exhaus-
tive experimental methods, establishes such an hypothesis
as what is to be recognized as either a universal physical
principle, or the equivalent (as in the case of J.S. Bach’s
discovery and development of the principles of composi-
tion of well-tempered counterpoint).

The Geometry of the Complex Domain
Gauss’s devastating refutation of Euler’s and Lagrange’s
misconception of “imaginary numbers,” and the intro-
duction of the notion of the physical efficiency of the
geometry of the complex domain, is the foundation of all
defensible conceptions in modern mathematical physics.
Here lies the pivot of my proposed general use of this
case of Gauss’s refutation of Euler and Lagrange, as a
cornerstone of a new curriculum for secondary and uni-
versity undergraduate students.

Summarily, Gauss demonstrated not only that arith-
metic is not competently derived axiomatically from
the notion of the so-called counting numbers, but that
the proof of the existence of the complex domain with-
in the number-domain, showed two things of crucial
importance for all scientific method thereafter. These
complex variables are not merely powers, in the sense
that quadratic and cubic functions define powers dis-
tinct from simple linearity. They represent a replace-
ment for the linear notions of dimensionality, by a gen-
eral notion of extended magnitudes of physical space-
time, as Riemann generalized this from, chiefly, the
standpoints of both Gauss and Dirichlet, in his habilita-
tion dissertation.

The elementary character of that theorem of Gauss, so
situated, destroys the ivory-tower axioms of Euler et al. in
an elementary way, from inside arithmetic itself. It also
provides a standard of reference for the use of the term
“truth,” as distinct from mere opinion, within mathemat-
ics and physical science, and also within the domain of
social relations. Those goals are achieved only on the con-
dition that the student works through Gauss’s own cog-
nitive experience, both in making the discovery and in
refuting reductionism generically. It is the inner, cogni-
tive sense of “I know,” rather than “I have been taught to
believe,” which must become the clearly understood
principle of a revived policy of a universalized Classical
humanist education.

Once a dedicated student achieves the inner cognitive
sense of “I know this,” he, or she has gained a bench-
mark against which to measure many other things.

—Lyndon H. LaRouche, Jr.
April 12, 2002
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