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Man is intrinsical-
ly good; all babies are
born good, all people’s
babies are born good.
They all have this
potential for good.
Each one is like an
angel: every baby is an
angel. A baby comes,
it’s an angel on a mis-
sion. Now, it does not
come with any
instructions, it comes
with a capability. The
baby will discover
what its mission is,
the baby will grow
and develop the capa-
bilities to carry out the
mission.

Then the baby will die, as an older per-
son. But the baby will, like an angel, have
come to society and done some good. And
society needed that angel to come to society
at that time to do that good. And anybody
who’s any good, wishes to be such an angel.
You come with no special powers, no ticket
telling you what your instructions are, but
you have to recognize your instructions
from your situation and do some good, so
that when you die, you have been an angel
who came and did some good for humanity.
Humanity needed you, you are a part of
humanity forever. 

All people are like that, so why don’t all
people act like that, at all times? Because
society depends upon people who act like
angels to other people, as leaders, people
who inspire, provide ideas that are needed
at that time. Then, what is an evil society?
An evil society is one which does not allow
angels to be angels. It works to suppress
those who try to change things, it wants to
turn people into animals, or into Hermann
Hesse’s “Steppenwolf” types.

In the 1970s, I knew that the Soviet
Union was doomed. I knew it, because the
leadership of the Communist Party praised

Brezhnev for not being a voluntarist. 
All leadership is of a voluntarist nature,

because Man is not perfect. The kinds of
societies that are given to us by our prede-
cessors, are always imperfect. And, if they
continue with that imperfection, they will
turn into their opposite, they will become
oppressive. We depend upon people to
come forward who are voluntarists, who
are leaders, who inspire a people, who lead
them, as the present leadership of China has
inspired its people with the confidence to do
something.

Evil Is Named Mediocrity

What was the evil in Russia, is named
mediocrity, the power of mediocrity to sup-
press genius. You had geniuses—what did
the geniuses do? They ran into science,
they went into the Academy of Science,
whatever they could do, just to escape from
the KGB, the Chekisti and the mediocri-
ties, to find a niche where they could do
something, to make their lives meaningful.
These were the only places where they
could go, to do some good.

How many people of my generation,
were willing to stand up to what happened
in the United States in 1946 and on, under
Truman? Almost none. The same thing

happened in
Germany, after the
Nazi takeover. You
don’t think. You’re
careful of what you
say, you’re careful of
what you think. And,
you have a few of us
stand up and refuse to
capitulate. And those
of us who refuse to
capitulate to mediocrity,
against all odds, are
essential, as the true
patriots of our nations.
If we are eliminated,
the nation will go to
Hell, because it has

allowed itself to be ruled by the principle of
mediocrity.

Don’t look in Russia, in communism,
for what was evil, because, remember, the
Russian people are the Russian people.
They’re born every day. Every baby is an
angel, a potential angel. When you don’t
let the angels come forth to renew society,
when you have a system to prevent them
from becoming angels—you repress them,
and none escapes—then you have no lead-
ers. And if you have no true leaders who
are fighters, who are morally strong, then
you will not have the ideas, you will not
have the programs, that are necessary to
renew the nation, to correct its errors.

So, don’t look for what was wrong in
what happened. Look for what was wrong
in what was missing, as in science. Always
look for the missing principle. Because,
human beings are intrinsically noble; they
are the greatest thing in the universe. If you
let them become what they should become,
you will always have progress. And the only
time a nation destroys itself, a civilization
destroys itself, is when it becomes efficient in
enforcing mediocrity.

—Lyndon H. LaRouche, Jr.
seminar with Eastern Europeans 

and Russians, Dec. 16, 1997

‘We Must Be As Angels’

‘The Nativity’ (detail), Gerard David (Flemish, d.1523). Central panel of a triptych. (The Metropolitan Museum of Art. Jules Bache Collection, 1949)
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In this Special Issue of Fidelio, we have chosen to
feature a presentation of Carl F. Gauss’s 1801
determination of the orbit of the asteroid Ceres,

which was commissioned by Lyndon H. LaRouche,
Jr., in 1997. This presentation is part of an ongoing
series of Pedagogical Exercises
highlighting the role of
metaphor and paradox in
creative reason, through the
study of great discoveries of science and art.

The reason it is necessary to study and master such
material is not academic, but existential. The world is
currently in the midst of a civilizational crisis, which can
only be compared to that of the Fourteenth-century
New Dark Age. As can be seen from the so-called Asian
financial crisis, we are faced today with a systemic, global
financial crisis, far worse than the collapse of the

Venetian-controlled Peruzzi and Bardi family banks in
1343-44, which sparked the Dark Age then.

In the Fourteenth century, the sovereign nation-
state with a commitment to public education and
technological and scientific progress, had not yet

emerged. Today, the same
Black Guelph faction, which
fought to prevent the
emergence of the nation-state
in the Fourteenth century, is

thoroughly committed to turning the clock back,
destroying the nation-state and imposing a supra-
national, neo-Malthusian order.

British Lord Rees-Mogg has been most prominent
in arguing that, as in feudal times, only five percent of
today’s population need be educated, to rule on behalf
of the financial oligarchy in the Information Age. The

EDIT ORIAL

Perhaps it was to Haymarket—a horses mart,
Where other things into commodities were changing,
That once a hungry poet brought
The Muses’ steed, to be exchanging.

The Hippogriff did neigh so bright
And in parade did prance with pomp so pretty,
Astonished stood each one and cried:
“The noble, kingly animal! But pity,
That doth an ugly pair of wings its figure fair
Deform! The fastest mailtrain were it gracing.
The breed, the people say, is rare,
Yet who will through the air be racing?
And no one will his coin be placing.”
At last a daring farmer stood.
“The wings, indeed,” says he, “not useful does one find them;
Yet one can always either clip or bind them,
Then is the horse for pulling ever good.
A twenty-pound, on this to risk I’m willing.”
The shyster, much amused, the wares now cheaply selling,
Agrees at once. “One man, one word!”
And Hans trots with his booty freshly for’d.

The noble beast is now in yoke restrained.
Yet feels it scarce the burden so unwonted,
Then runs it forth with flight desires undaunted,
And flings, from noble wrath enflamed,
To chasm’s edge, all that the cart contained.
“All right,” thinks Hans. “I may be to this beast confiding
Alone no cart. Experience doth cunning make.
Come morn will passengers be riding,
I’ll hitch it to the cart the lead to take.
Two horses shall this lively crab for me be saving,
And with the years will fade its raving.”

At first it went quite well. The lightly-winged horse
Enlives the old nag’s step, and swift the cart is flying.
But now what’s this? With one look at the clouds turned course,
And ’customed not, the ground with solid hoof to plying,
Forsaking soon the safer cart-wheel trail,
And true to nature’s stronger hail,
It runs clear through the swamp and moor, tilled field and hedges;
An equal frenzy doth th’ entire post-team seize,
No call doth help, no rein its haste doth ease,
At last, to wand’rer’s fearful ledges,
The wagon, smashed apart from endless jolts,
On steepest summit of the mountain halts.

The Importance of Scientific Pedagogy in 
Challenging the False-Axiomatic Assumptions
Which Have Brought Civilization to the Abyss

Pegasus in Yoke
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remaining ninety-five percent of the population—to be
treated as feudal serfs—need not be educated at all, he
writes in the pages of the leading London press.

In the last three decades, this process of de-
education or de-schooling has been far advanced.
Through “outcome-based education” and other mind-
destroying so-called reforms, our youth have been
“dumbed-down,” becoming increasingly illiterate.
“Post-industrial,” ecologist anti-scientific hoaxes, such
as “global warming,” are widely accepted, contrary to
scientific evidence. The unchallenged acceptance of
such false-axiomatic assumptions, leads necessarily to
the entropic doom of civilization.

The only proven alternative to such civilizational
devolution, is an emphasis on fostering those powers
of cognitive reason, which distinguish man as created
in the image of God (imago Dei), in contradistinction
to all other species. Mankind only emerged from the
Dark Age of the Fourteenth century, through the
emphasis placed on intellectual growth by a
succession of world-historical individuals, beginning
with Dante Alighieri, Francesco Petrarch, Gerard
Groote (founder of the Brothers of the Common
Life), and Nicolaus of Cusa, the key organizer of the
Council of Florence.

As Lyndon LaRouche has emphasized, if our
civilization is to survive the current crisis, we must not
flee, as Shakespeare’s Hamlet did, from the cognition
of “the undiscovered country,” which is necessary to
lead society from an “n-fold manifold” to an “n+1-fold
manifold.” The capacity for cognition can be fostered,
not by Aristotelean methods of rote learning, but
rather, only in the manner employed by the Brothers
of the Common Life, which was to encourage the
student’s replication of great scientific discoveries in his
own mind. Only then does the individual truly know
how to think, to assimilate and generate those new
ideas which civilization requires in order to make the
advances necessary to survival.

To succeed in establishing a New Bretton Woods
system, as LaRouche has proposed, we need to
rediscover the childlike joy of discovering profound
ideas, by mastering such discoveries as those of Gauss
presented in this issue. Only then shall we be truly free
of the yoke of serfdom, which Lord Rees-Mogg and
his British oligarchical masters would reimpose on the
vast majority of humanity. This is the quality of mind,
which Friedrich Schiller captured in his beloved poem
about the liberation of creative genius, “Pegasus in
Yoke.”

“That just is not the right way ever,”
Says Hans, his face contorted much by doubt.
“Thus will it be successful never;
Let’s see, if this mad dog be brought
Through meager food and work to tether.”
The trial will be made. Soon beast with beauty rare,
Before three days did fade around it
To shadow was reduced. “I have, I have now found it!”
Cries Hans. “Now quick, and hitch it here,
Before the plough beside my strongest steer.”

’Tis said, ’tis done. In ludicrous procession,
One sees on plough an ox and winged stallion.
Unwilling mounts the griff and strains with final might
Its sinews forth, to take as old to flying.
In vain, delib’rate doth the neighbor stride
And Phoebus’ steed so proud, to steer must be complying.
Till now, consumed by long, resistant course,
The strength from all its limbs is thinning,
From grief, now breaks the noble, godly-horse
To earth it falls and in the dust is spinning.
“Accursed beast!” at last breaks Hans’ abuse
Loud scolding out, whilst from him flies a beating.
“So you then e’en for ploughing are no use,
The rogue sold you to me was cheating.”

While yet in him doth rage of anger last,
The whip doth swing, comes cheerful now and fast
A merry fellow on the road with footsteps fleeting.
The zither sounds forth in his nimble hand,
His hair, an ornament of yellow,
Is plaited through with golden band.
“Whereto, that pair astonishing, my fellow?”
He calls the peasant from afar.
“The bird and ox a single rope is binding,
I ask of you, what is that pair!
If for a while you’d be confiding
The horse, to make a test, to me,
Look out, you shall a marvel see!”

The Hippogriff unyoked doth stand,
And smiling now the young man swings upon its haunches.
The beast scarce feels the master’s certain hand,
Then gnashes it the bridle band
And climbs, and lightning flashes from inspired glances.
No more the former creature, kingly-wise,
A god, a spirit, doth arise,
Unfurls it suddenly with stormy splendor
Its winged pomp, shoots roaring to the sky,
And ’fore a glance can follow nigh,
It glides into the high blue yonder.

—Friedrich Schiller
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The following presentation of Carl Gauss’s
determination of the orbit of the asteroid
Ceres, was commissioned by Lyndon H.
LaRouche, Jr., in October 1997, as part of an
ongoing series of Pedagogical Exercises high-
lighting the role of metaphor and paradox in
creative reason, through study of the great
discoveries of science. Intended for individual
and classroom study, the weekly install-
ments—now “chapters”—were later serial-
ized in The New Federalist newspaper. They
are collected here, in their entirety, for the
first time, incorporating additions and revi-
sions to both text and diagrams.

Through the course of their presentation, it
became necessary for the authors to review
many crucial questions in the history of math-
ematics, physics, and astronomy. All of these
issues were subsumed in the primary objective,
the discovery of the orbit of Ceres. And,
because they were written to challenge a lay
audience to master unfamiliar and conceptu-
ally dense material at the level of axiomatic
assumptions, the installments were often pur-
posefully provocative, proceeding by way of
contradictions and paradoxes.

Nonetheless, the pace of the argument
moves slowly, building its case by constant ref-

erence to what has gone before. It is, therefore,
a mountaintop you need not fear to climb!

We begin, by way of a preface, with the
following excerpted comments by Lyndon
H. LaRouche, Jr. The authors return to
them in the concluding stretto. —KK

* * *

From Euclid through Legendre,
geometry depended upon axiomat-

ic assumptions accepted as if they were
self-evident. On more careful inspec-
tion, it should be evident, that these

by Jonathan Tennenbaum 

and Bruce Director

How Gauss 
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assumptions are not necessarily true.
Furthermore, the interrelationship
among those axiomatic assumptions, is
left entirely in obscurity. Most conspicu-
ous, even today, generally accepted
classroom mathematics relies upon the
absurd doctrine, that extension in space
and time proceeds in perfect continuity,
with no possibility of interruption, even
in the extremely small. Indeed, every
effort to prove that assumption, such as
the notorious tautological hoax concoct-
ed by the celebrated Leonhard Euler,

FIGURE 1.1. Positions of unknown
planet (Ceres), observed by
Giuseppe Piazzi on Jan. 2, Jan.
22, and Feb. 11, 1801, moving
slowly counter-clockwise
against the ‘sphere of the
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was premised upon a geometry which preassumed perfect
continuity, axiomatically. Similarly, the assumption that
extension in space and time must be unbounded, was shown
to have been arbitrary, and, in fact, false.

Bernhard Riemann’s argument, repeated in the con-
cluding sentence of his dissertation “On the Hypotheses
Which Underlie Geometry,” is, that, to arrive at a suitable
design of geometry for physics, we must depart the realm
of mathematics, for the realm of experimental physics.
This is the key to solving the crucial problems of represen-
tation of both living processes, and all processes which, like
physical economy and Classical musical composition, are
defined by the higher processes of the individual human
cognitive processes. Moreover, since living processes, and
cognitive processes, are efficient modes of existence within
the universe as a whole, there could be no universal physics
whose fundamental laws were not coherent with that anti-
entropic principle central to human cognition. . . .

By definition, any experimentally validated principle
of (for example) physics, can be regarded as a dimen-
sion of an “n-dimensional” physical-space-time geome-
try. This is necessary, since the principle was validated
by measurement; that is to say, it was validated by mea-
surement of extension. This includes experimentally
grounded, axiomatic assumptions respecting space and
time. The question posed, is: How do these “n” dimen-
sions interrelate, to yield an effect which is characteris-
tic of that physical space-time? It was Riemann’s
genius, to recognize in the experimental applications
which Carl Gauss had made in applying his approach
to bi-quadratic residues, to crucial measurements in
astrophysics, geodesy, and geomagnetism, the key to
crucial implications of the approach to a general theory
of curved surfaces rooted in the generalization from
such measurements. . . .

What Art Must Learn from Euclid
The crucial distinction between that science and art
which was developed by Classical Greece, as distinct
from the work of the Greeks’ Egyptian, anti-
Mesopotamia, anti-Canaanite sponsors, is expressed most
clearly by Plato’s notion of ideas. The possibility of mod-
ern science depends upon, the relatively perfected form
of that Classical Greek notion of ideas, as that notion is
defined by Plato. This is exemplified by Plato’s Socratic
method of hypothesis, upon which the possibility of
Europe’s development depended absolutely. What is
passed down to modern times as Euclid’s geometry,
embodies a crucial kind of demonstration of that princi-
ple; Riemann’s accomplishment was, thus, to have cor-
rected the errors of Euclid, by the same Socratic method
employed to produce a geometry which had been, up to
Riemann’s time, one of the great works of antiquity. This

has crucial importance for rendering transparent the
underling principle of motivic thorough-composition in
Classical polyphony. . . .

The set of definitions, axioms, and postulates deduced
from implicitly underlying assumptions about space, is
exemplary of the most elementary of the literate uses of
the term hypothesis. Specifically, this is a deductive hypoth-
esis, as distinguished from higher forms, including non-
linear hypotheses. Once the hypothesis underlying a
known set of propositions is established, we may antici-
pate a larger number of propositions than those originally
considered, which might also be consistent with that
deductive hypothesis. The implicitly open-ended collec-
tion of theorems which might satisfy that latter require-
ment, may be named a theorem-lattice . . . .

The commonly underlying principle of organization
internal to each such type of deductive lattice, is extension,
as that principle is integral to the notion of measurement.
This notion of extension, is the notion of a type of exten-
sion characteristic of the domain of the relevant choice of
theorem-lattice. All scientific knowledge is premised
upon matters pertaining to a generalized notion of exten-
sion. Hence, all rational thought, is intrinsically geomet-
rical in character.

In first approximation, all deductively consistent sys-
tems may be described in terms of theorem-lattices. How-
ever, as crucial features of Riemann’s discovery illustrate
most clearly, the essence of human knowledge is change,
change of hypothesis, this in the sense in which the prob-
lem of ontological paradox is featured in Plato’s Par-
menides. In short, the characteristic of human knowledge,
and existence, is not expressible in the mode of deductive
mathematics, but, rather, must be expressed as change,
from one hypothesis, to another. The standard for change,
is to proceed from a relatively inferior, to superior hypo-
thesis. The action of scientific-revolutionary change, from
a relatively inferior, to relatively superior hypothesis, is the
characteristic of human progress, human knowledge, and
of the lawful composition of that universe, whose mastery
mankind expresses through increases in potential relative
population-density of our species.

The process of revolutionary change occurs only
through the medium of metaphor, as the relevant princi-
ple of contradiction has been stated, above. Just as Euclid
was necessary, that the work of descriptive geometry by
Gaspard Monge et al., the work of Gauss, and so forth,
might make Riemann’s overturning Euclid feasible, so all
human progress, all human knowledge is premised upon
that form of revolutionary change which appears as the
agapic quality of solution to an ontological paradox.

—Lyndon H. LaRouche, Jr.,
adapted from “Behind the Notes”
Fidelio, Summer 1997 (Vol.VI, No. 2)



January 1, 1801, the first day of a new century. In the
early morning hours of that day, Giuseppe Piazzi,
peering through his telescope in Palermo, discovered

an object which appeared as a small dot of light in the
dark night sky. (Figure 1.1) He noted its position with
respect to the other stars in the sky. On a subsequent
night, he saw the same small dot of light, but this time it
was in a slightly different position against the familiar
background of the stars.

He had not seen this object before, nor were there any
recorded observations of it. Over the next several days,
Piazzi watched this new object, carefully noting its change
in position from night to night. Using the method
employed by astronomers since ancient times, he recorded
its position as the intersection of two circles on an imagi-
nary sphere, with himself at the center. (Figure 1.2a)
(Astronomers call this the “celestial sphere”; the circles are
similar to lines of longitude and latitude on Earth.) One set
of circles was thought of as running perpendicular to the
celestial equator, ascending overhead from the observer’s
horizon, and then descending. The other set of circles runs
parallel to the celestial equator.

To specify any one of these circles, we require an angu-

lar measurement: the position of a longitudinal circle is
specified by the angle (arc) known as the “right ascension,”
and that of a circle parallel to the celestial equator, by the
“declination.”* (Figure 1.2b). Hence, two angles suffice to
specify the position of any point on the celestial sphere.
This, indeed, is how Piazzi communicated his observa-
tions to others.

Piazzi was able to record the changing positions of the
new object in a total of 19 observations made over the fol-
lowing 42 days. Finally, on February 12, the object disap-
peared in the glare of the sun, and could no longer be
observed. During the whole period, the object’s total
motion made an arc of only 9° on the celestial sphere.

What had Piazzi discovered? Was it a planet, a star, a
comet, or something else which didn’t have a name? (At
first, Piazzi thought he had discovered a small comet with
no tail. Later, he and others speculated it was a planet
between Mars and Jupiter.) And now that it had disap-
peared, what was its trajectory? When and where could it
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FIGURE 1.2 The celestial sphere. (a) Since ancient times, astronomers have recorded their observations of heavenly bodies as points
on the inside of an imaginary sphere called the celestial sphere, or “sphere of the fixed stars,” with the Earth at its center. Arcs of right
ascension and parallels of declination are shown. (b) Locating the position of an object on the celestial sphere by measuring right
ascension and declination.

(a) (b)

CHAPTER 1

Introduction

__________

* Figure 1.1 shows the celestial sphere as seen by an observer, with  a
grid for measuring right ascension and declination shown mapped
against it.



be seen again? If it were orbiting the sun, how could its tra-
jectory be determined from these few observations made
from the Earth, which itself was moving around the sun?

Had Piazzi observed the object while it was approach-
ing the sun, or was it moving away from the sun? Was it
moving away from the Earth or towards it, when these
observations were made? Since all the observations
appeared only as changes in position against the back-
ground of the stars (celestial sphere), what motion did
these changes in position reflect? What would these
changes in position be, if Piazzi had observed them from
the sun? Or, a point outside the solar system itself: a
“God’s eye view”? (Figure 1.3)

It was six months before Piazzi’s observations were
published in the leading German-language journal of
astronomy, von Zach’s Monthly Correspondence for the Pro-
motion of Knowledge of the Earth and the Heavens, but news
of his discovery had already spread to the leading
astronomers of Europe, who searched the sky in vain for
the object. Unless an accurate determination of the object’s
trajectory were made, rediscovery would be unpredictable.

There was no direct precedent to draw upon, to solve
this puzzle. The only previous experience that anyone
had had in determining the trajectory of a new object in
the sky, was the 1781 discovery of the planet Uranus by
William Herschel. In that case, astronomers were able to
observe the position of Uranus over a considerable time,
recording the changes in the position of the planet with
respect to the Earth.

With these observations, the mathematicians simply
asked, “On what curve is this planet traveling, such that
it would produce these particular observations?” If one
curve didn’t produce the desired mathematical result,
another was tried.

As Carl F. Gauss described it in the Preface to his 1809
book, Theory of the Motion of the Heavenly Bodies Moving
about the Sun in Conic Sections,

As soon as it was ascertained that the motion of the new
planet, discovered in 1781, could not be reconciled with
the parabolic hypothesis, astronomers undertook to adapt
a circular orbit to it, which is a matter of simple and very
easy calculation. By a happy accident, the orbit of this
planet had but a small eccentricity, in consequence of
which, the elements resulting from the circular hypothe-
sis sufficed, at least for an approximation, on which the
determination of the elliptic elements could be based.

There was a concurrence of several other very favor-
able circumstances. For, the slow motion of the planet,
and the very small inclination of the orbit to the plane of
the ecliptic, not only rendered the calculations much more
simple, and allowed the use of special methods not suited
to other cases; but they removed the apprehension, lest the
planet, lost in the rays of the sun, should subsequently
elude the search of observers (an apprehension which
some astronomers might have felt, especially if its light
had been less brilliant); so that the more accurate determi-
nation of the orbit might be safely deferred, until a selec-
tion could be made from observations more frequent and
more remote, such seemed best fitted for the end in view.

Linearization in the Small

The false belief that we need a large number of observa-
tions, filling out as large an arc as possible, in order to
determine the orbit of a heavenly body, is a typical prod-
uct of the Aristotelean assumptions brought into science
by the British-Venetian school of mathematics—the
school typified by Paolo Sarpi, Isaac Newton, and Leon-
hard Euler. Sarpi et al. insisted that, if we examine small-
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FIGURE 1.3. Artist’s
rendering of a “God’s eye
view” of the first six
planets of the solar system.
(Note that the correct
planetary sizes, and
relative distances from the
sun of “outer planets”
Jupiter and Saturn, are
not preserved.)



9

tained, in this case, only if the problem of determining
the orbit of an unknown planet is treated as a purely
mathematical one.

For example, think of three dots on a plane. (Figure
1.5) On how many different curves could these dots lie?
Now add more dots. The more dots, covering a greater
part of the curve, the more precise determination of the
curve. A small change of the position of the dots, can

er and smaller portions of any curve in nature, we shall
find that those portions look and behave more and more
like straight line segments—to the point that, for suffi-
ciently small intervals, the difference becomes practically
insignificant and can be ignored. This idea came to be
known as “linearization in the small.”

In the mid-Fifteenth century, Nicolaus of Cusa had
already demonstrated conclusively that linearization in
the small had no place in mathematics—if that mathe-
matics were to reflect truth. Cusa demonstrated that the
circle represents a fundamentally different species of curve
from a straight line, and that this species difference does
not disappear, or even decrease, when we examine very
small portions of the circle. (Figure 1.4) With respect to
their increasing number of vertices, the polygons
inscribed in and circumscribing the circle become more
and more unlike it.

Extending Cusa’s discovery to astronomy, Johannes
Kepler discovered that the solar system was ordered
according to certain harmonic principles. Each small part
of the solar system, such as a small interval of a planetary
orbit, reflected that same harmonic principle completely.
Kepler’s call for the invention of a mathematical concept
to measure this self-similarity, provoked G.W. Leibniz to
develop the infinitesimal calculus. The entirety of the
work of Sarpi, Newton, and Euler, was nothing but a
fraud, perpetrated by the Venetian-British oligarchy
against the work of Cusa, Kepler, and Leibniz.

Applying the false mathematics of Sarpi et al. to
astronomy, would mean that the physical Universe
became increasingly linear in the small, and that, there-
fore, the smaller the arc spanned by the given series of
observations, the less those observations tell us about the
shape of the orbit as a whole. This delusion can be main-

FIGURE 1.4. Nicolaus of Cusa demonstrated, that no matter how many times its sides are multiplied, the polygon can never attain
equality with the circle. The polygon and circle are fundamentally different species of figures.

FIGURE 1.5. (a) Here are just a few of the curves that can
be drawn through the same three points. (b) With more
observation points, we may find that the curve is not as
anticipated.

(a)

(b)



mean a great change in the shape of the curve. The fewer
the dots and the closer together they are, the less precise is
the mathematical determination of the curve.

If this false mathematics were imposed on the Uni-
verse, determining the orbit of a planet would hardly be
possible, except by curve-fitting or statistical correlations
from as extensive a set of observations as possible. But the
changes of observed positions of an object in the night
sky, are not dots on a piece of paper. These changes of
position are a reflection of physical action, which is self-
similar in every interval of that action, in the sense under-
stood by Cusa, Kepler, and Leibniz. The heavenly body is
never moving along a straight line, but diverges from a
straight line in every interval, no matter how small, in a
characteristic fashion.

In fact, if we focus on the characteristic features of the
“non-linearity in the small” of any orbit, then the smaller
the interval of action we investigate in this way, the more
precise the determination of the orbit as a whole! This
key point will become ever clearer as we work through
Gauss’ determination of the orbit of Ceres.

It was only an accident that the problem of the deter-
mination of the orbit of Uranus could be solved without
challenging the falsehood of linearization in the small.
But such accidental success of a wrong method, was shat-
tered by the problem presented by Piazzi’s discovery. The
Universe was demonstrating Euler was a fool.

(Years later, Gauss would calculate in one hour, the
trajectory of a comet, which had taken Euler three days
to figure, a labor in which Euler lost the sight of one eye.
“I would probably have become blind also,” Gauss said of
Euler, “if I had been willing to keep on calculating in this

manner for three days!”)
It was September of 1801, before Piazzi’s observations

reached the 24-year-old Gauss, but Gauss had already
anticipated the problem, and ridiculed other mathemati-
cians for not considering it, “since it assuredly commend-
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FIGURE 1.7.  Some characteristic properties of the ellipse (a fuller description is presented in the Appendix).

FIGURE 1.6. Generation of the conic sections by cutting a
cone with a rotating plane. When the plane is parallel to
the base, the section is a circle. As the plane begins to rotate,
elliptical sections are generated, until the plane parallel to
the side of the cone generates a parabola. Further rotation
generates hyperbolas.

Construction of a tangent to
the ellipse: Draw a circle
around focus f, with radius
equal to the constant 
distance d + d′. The tangent
at any point q is the line
obtained by “folding” the
circle such that point q′
touches the second focus f′.
This construction can be
“inverted” to generate
ellipses and other conic
sections as “envelopes” of
straight lines (see text and
Figure 1.9).

Every ellipse has two
foci f, f′, such that the
sum of distances d and d′
to any point q on the
circumference of the
ellipse is a constant.

The ellipse as a
“contraction” of the
circumscribed circle, in
the direction perpendicular
to the major axis. The
ratio pq : pq′ remains the
same, no matter where  p
lies on the major axis.

d d′

f f′

q

q′

q

p

d d′

d′

f f′

q

q′

(a) (c)

(b)
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ed itself to mathematicians by its difficulty and elegance,
even if its great utility in practice were not apparent.”
Because others assumed this problem was unsolvable,
and were deluded by the accidental success of the wrong
method, they refused to believe that circumstances would
arise necessitating its solution. Gauss, on the other hand,
considered the solution, before the necessity presented
itself, knowing, based on his study of Kepler and Leib-
niz, that such a necessity would certainly arise.

Introducing the Conic Sections
Before embarking on our journey to re-discover the
method by which Gauss determined the orbit of Ceres, we
suggest the reader investigate for himself certain simple
characteristics of curves that are relevant to the following
chapters. As we shall show later, Kepler discovered that

the planets known to him moved around the sun in orbits
in the shape of ellipses. By Gauss’s time, objects such as
comets had been observed to move in orbits whose shape
was that of other, related curves. All these related curves
can be generated by slicing a cone at different angles, and
are therefore called “conic sections.” (Figure 1.6)

The conic sections can be constructed in a variety of
different ways. (SEE Figure 1.7, as well as the Appendix,
“The Harmonic Relationships in an Ellipse”) The reader
can get a preliminary sense of some of the geometrical
properties of the conic sections, by carrying out the fol-
lowing construction.

Take a piece of waxed paper and draw a circle on it.
(Figure 1.8) Then put a dot at the center of the circle.
Now fold the circumference onto the point at the center
and make a crease. Unfold the paper and make a new fold,
bringing another point on the circumference to the point

FIGURE 1.8. Using paper
folding to generate a circle as
an envelope of chords.

. . .

FIGURE 1.9. Conic sections generated as envelopes of straight lines, using the
“waxed paper folding” method. (a) Ellipse. (b) Hyperbola. (c) Parabola.

(a) (b)

(c)



at the center. Make another crease. Repeat this process
around the entire circumference (approximately 25 times).
At the end of this process, you will see a circle enveloped
by the creases in the wax paper. 

Now take another piece of wax paper and do the
same thing, but this time put the point a little away
from the center. At the end of this process, the creases
will envelop an ellipse, with the dot being one focus.
(Figure 1.9a)

Repeat this construction several times, each time mov-
ing the point a little farther away from the center of the
circle. Then try it with the point outside the circle; this
will generate a hyperbola. (Figure 1.9b) Then make the
same construction, using a line and a point, to construct a

parabola. (Figure 1.9c)
In this way, you can construct all the conic sections

as envelopes of lines. Now, think of the different curva-
tures involved in each conic section, and the relation-
ship of that curvature to the position of the dot (focus).

To see this more clearly, do the following. In each of
the constructions, draw a straight line from the focus to
the curve. (Figure 1.10) How does the length of this line
change, as it rotates around the focus? How is this
change different in each curve? 

Over the next several chapters, we will discover how
these geometrical relationships reflect the harmonic
ordering of the Universe.

—Bruce Director
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FIGURE 1.10. The length of a line drawn from the focus to the curve changes as it moves
around the curve, except in the case of the circle. In the case of a planetary orbit, that
length is the distance from the sun to the planet . Note that the circle and ellipse are closed
figures, whereas the parabola and two-part hyperbola are unbounded.

Circle Ellipse Parabola Hyperbola

CHAPTER 2

Clues from Kepler

What did Gauss do, which other astronomers
and mathematicians of his time did not, and
which led those others to make wildly erro-

neous forecasts on the path of the new planet? Perhaps
we shall have to consult Gauss’s great teacher, Johannes
Kepler, to give us some clues to this mystery.

Gauss first of all adopted Kepler’s crucial hypothesis,
that the motion of a celestial object is determined solely by its
orbit, according to the intelligible principles Kepler
demonstrated to govern all known motions in the solar
system. In the Keplerian determination of orbital motion,
no information is required concerning mass, velocity, or
any other details of the orbiting object itself. Moreover, as
Gauss demonstrated, and as we shall rediscover for our-

selves, the orbit and the orbital motion in its totality, can
be adduced from nothing more than the internal “curva-
ture” of any portion of the orbit, however small.

Think this over carefully. Here, the science of Kepler,
Gauss, and Riemann distinguishes itself absolutely from
that of Galileo, Newton, Laplace, et al. Orbits and
changes of orbit (which in turn are subsumed by higher-
order orbits) are ontologically primary. The relation of the
Keplerian orbit, as a relatively “timeless” existence, to the
array of successive positions of the orbiting body, is like
that of an hypothesis to its array of theorems. From this
standpoint, we can say it is the orbit which “moves” the
planet, not the planet which creates the orbit by its
motion!



13

If we interfere with the motion of an orbiting object,
then we are doing work against the orbit as a whole. The
result is to change the orbit; and this, in turn, causes the
change in the visible motion of the object, which we
ascribe to our efforts. That, and not the bestial “pushing
and pulling” of Sarpian-Newtonian point-mass physics,
is the way our Universe works. Any competent astro-
naut, in order to successfully pilot a rendezvous in space,
must have a sensuous grasp of these matters. Gauss’s
entire method rests upon it.

Gauss adopted an additional, secondary hypothesis,
likewise derived from Kepler, for which we have been
prepared by Chapter 1: At least to a very high degree of
precision, the orbit of any object which does not pass
extremely close to some other body in our solar system
(moons are excluded, for example), has the form of a
simple conic section (a circle, an ellipse, a parabola, or a
hyperbola) with focal point at the center of the sun.
Under such conditions, the motion of the celestial object
is entirely determined by a set of five parameters, known
among astronomers as the “elements of the orbit,”
which specify the form and position of the orbit in
space. Once the “elements” of an orbit are specified, and
for as long as the object remains in the specified orbit, its
motion is entirely determined for all past, present, and
future times!

Gauss demonstrated how the “elements” of any orbit,
and thereby the orbital motion itself in its totality, can be
adduced from nothing more than the curvature of any
“arbitrarily small” portion of the orbit; and how the latter
can in turn be be adduced—in an eminently practical
way—from the “intervals,” defined by only three good,
closely spaced observations of apparent positions as seen
from the Earth!

The ‘Elements’ of an Orbit

The elements of a Keplerian elliptical orbit consist of the
following:

• Two parameters, determining the position of the
plane of the object’s orbit relative to the plane of the Earth’s
orbit (called the “ecliptic”). (Figure 2.1) Since the sun is
the common focal point of both orbits, the two orbital
planes intersect in a line, called the “line of nodes.” The
relative position of the two planes is uniquely deter-
mined, once we prescribe: 

(i) their angle of inclination to each other (i.e., the
angle between the planes); and 

(ii) the angle made by the line of nodes with some
fixed axis in the plane of the Earth’s orbit. 

• Two parameters, specifying the shape and overall
scale of the object’s Keplerian orbit. (Figure 2.2) It is not
necessary to go into this in detail now, but the chiefly
employed parameters are: 

(iii) the relative scale of the orbit, as specified (for
example) by its width when cut perpendicular to its
major axis through the focus (i.e., center of the sun); 

(iv) a measure of shape known as the “eccentricity,”
which we shall examine later, but whose value is 0 for cir-
cular orbits, between 0 and 1 for elliptical orbits, exactly 1
for parabolic orbits, and greater than 1 for hyperbolic
orbits. Instead of the eccentricity, one can also use the peri-
helial distance, i.e., the shortest distance from the orbit to
the center of the sun, or its ratio to the width parameter; 

• Lastly, we have: 
(v) one parameter specifying the angle which the

main axis of the object’s orbit within its own orbital
plane, makes with the line of intersection with the
Earth’s orbit (“line of nodes”). For this purpose, we can

ecliptic (plane 
of Earth's orbit)

line of nodes

inclination of orbital 
plane to ecliptic

q

f

q

i

m
aj

or
ax

is

FIGURE 2.1. A set of three angles is used to
specify the spatial orientation of a given
Keplerian orbit relative to the orbit of the
Earth. (1) Angle of inclination i, which
the plane of the given orbit makes with
the ecliptic plane (the plane of the
Earth’s orbit). (2) Angle f, which the
orbit’s major axis makes with the “line
of nodes” (the line of intersection of
the plane of the given orbit and the
ecliptic plane). (3) Angle q, which
the line of nodes makes with some
fixed axis a in the ecliptic plane
(the latter is generally taken to be
the direction of the “vernal
equinox” ). 
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take the angle between the major axis of the object’s orbit
and the line of nodes. (Figure 2.1)

The entire motion of the orbiting body is determined
by these elements of the orbit alone. If you have mastered
Kepler’s principles, you can compute the object’s precise
position at any future or past time. All that you must
know, in addition to Kepler’s laws and the five parame-
ters just described, is a single time when the planet was (or
will be) in some particular locus in the orbit, such as the
perihelial position. (Sometimes, astronomers include the
time of last perihelion-crossing among the “elements.”)

Now, let us go back to Fall 1801, as Gauss pondered
over the problem of how to determine the orbit of the
unknown object observed by Piazzi, from nothing but a
handful of observations made in the weeks before it dis-
appeared in the glare of the morning sun.

The first point to realize, of course, is that the tiny arc
of a few degrees, which Piazzi’s object appeared to
describe against the background of the stars, was not the
real path of the object in space. Rather, the positions
recorded by Piazzi were the result of a rather complicat-
ed combination of motions. Indeed, the observed motion
of any celestial object, as seen from the Earth, is com-
pounded chiefly from the following three processes, or
degrees of action:

1. The rotation of the Earth on its axis (uniform circular
rotation, period one day). (Figure 2.3)

2. The motion of the Earth in its known Keplerian orbit
around the sun (non-uniform motion on an ellipse,
period one year). (Figure 2.4)

3. The motion of the planet in an unknown Keplerian

orbit (non-uniform motion, period unknown in the
case of an elliptical orbit, or nonexistent in case of a
parabolic or hyperbolic orbit). (Figure 2.5)

Thus, when we observe the planet, what we see is a
kind of blend of all of these motions, mixed or “multi-
plied” together in a complex manner. Within any interval
of time, however short, all three degrees of action are
operating together to produce the apparent positions of
the object. As it turns out, there is no simple way to “sep-
arate out” the three degrees of motion from the observa-
tions, because (as we shall see) the exact way the three
motions are combined, depends on the parameters of the
unknown orbit, which is exactly what we are trying to
determine! So, from a deductive standpoint, we would
seem to be caught in a hopeless, vicious circle. We shall
get back to this point later.

Although the main features of the apparent motion
are produced by the “triple product” of two elliptical
motion and one circular motion, as just mentioned, sev-
eral other processes are also operating, which have a com-
paratively slight, but nevertheless distinctly measurable
effect on the apparent motions. In particular, for his pre-
cise forecast, Gauss had to take into account the following
known effects:

4. The 25,700-year cycle known as the “precession of the
equinoxes,” which reflects a slow shift in the Earth’s
axis of rotation over the period of observation. (Figure
2.6) The angular change of the Earth’s axis in the
course of a single year, causes a shift in the apparent
positions of observed objects of the order of tens of sec-
onds of arc (depending on their inclination to the celes-
tial equator), which is much larger than the margin of

sun 
(focus)

'parameter'

major axis

(line of apsides) •

B
(semi-minor axis)

 csun
(focus)

f

A
(semi-major axis)

(a) Relative scale (b) Eccentricity

FIGURE 2.2. (a) The relative scale of the orbit can be measured by the line  perpendicular to the line of apsides, drawn through the
focus (sun). This line is known as the “parameter” of the orbit. (b) The eccentricity is measured as the ratio of the distance f from the
focus to the center of the orbit (point c, the midpoint of the major axis) divided by the semi-major axis A. For the circle, in which
case the focus and center coincide, f = 0; for the ellipse, 0 < f/A < 1.



ing the time it takes the light to reach him.

7. The apparent positions of stars and planets, as seen
from the Earth, are also significantly modified by the
diffraction of light in the atmosphere, which bends the
rays from the observed object, and shifts its apparent
position to a greater or lesser degree, depending on its
angle above the horizon. Gauss assumed that Piazzi, as
an experienced astronomer, had already made the nec-
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precision which Gauss required. (In Gauss’s time
astronomers routinely measured the apparent positions
of objects in the sky to an accuracy of one second of
arc, which corresponds to a 1,296,000th part of a full
circle. Recall the standard angular measure: one full
circle = 360 degrees; one degree = 60 minutes of arc;
one minute of arc = 60 seconds of arc. Gauss is always
working with parts-per-million accuracy, or better.) 

5. The “nutation,” which is a smaller periodic shift in the
Earth’s axis, superimposed on the 25,700-year preces-
sion, and chiefly connected with the orbit of the moon.

6. A slight shift of the apparent direction of a distant
star or planet relative to the “true” one, called “aber-
ration,” due to the compound effect of the finite
velocity of light and the velocity of the observer dur-

FIGURE 2.3. Rotation of Earth (daily). FIGURE 2.4. Orbit of Earth (yearly).

pole 
of the
ecliptic


ecliptic

celestial
equator

to the

'Pole

Star'

FIGURE 2.5. Unknown orbit of “mystery planet” (period
unknown).

FIGURE 2.6. Precession of the equinoxes (period 25,700
years).The “precession” appears as a gradual shift in the
apparent positions of rising and setting stars on the horizon,
as well as a shift in position of the celestial pole. This
phenomenon arises because Earth’s axis of rotation is not
fixed in direction relative to its orbit and the stars, but
rotates (precesses) very slowly around an imaginary axis
called the “pole of the ecliptic,” the direction perpendicular
to the ecliptic plane (the plane of the Earth’s orbit).
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essary corrections for diffraction in the reported obser-
vations. Nevertheless, Gauss naturally had to allow for
a certain margin of error in Piazzi’s observations, aris-
ing from the imprecision of optical instruments, in the
determination of time, and other causes.

Finally, in addition to the exact times and observed
positions of the object in the sky, Gauss also had to know
the exact geographical position of Piazzi’s observatory on
the surface of the Earth.

What Did Piazzi See?
Let us assume, for the moment, that the complications
introduced by effects 4, 5, 6, and 7 above are of a relative-
ly technical nature and do not touch upon what Gauss
called “the nerve of my method.” Focus first on obtaining
some insight into the way the three main degrees of
action 1, 2, and 3 combine to yield the observed positions.

For exploratory purposes, do something like the follow-
ing experiment, which requires merely a large room and
tables. (Figures 2.7 and 2.8) Set up one object to represent
the sun, and arrange three other objects to represent three
successive positions of the Earth in its orbit around the sun.
This can be done in many variations, but a reasonable first
selection of the “Earth” positions would be to place them
on a circle of about two meters
(about 6.5 feet) radius around
the “sun,” and about 23 cen-
timeters (about 9 inches)
apart—corresponding, let us
say, to the positions on the Sun-
days of three successive weeks.
Now arrange another three
objects at a greater distance
from the “sun,” for example 5
meters (16 feet), and separated
from each other by, say 6 and 7
centimeters. These positions
need not be exactly on a circle,
but only very roughly so. They
represent hypothetical positions
of Piazzi’s object on the same
three successive Sundays of
observation.

For the purpose of the sight-
ings we now wish to make, the
best choice of “celestial objects”
is to use small, bright-colored
spheres or beads of diameter 1
cm or less, mounted at the end
of thin wooden sticks which are
fixed to wooden disks or other
objects, the latter serving as

bases placed on the table, as shown in the photograph in
Figure 2.7.

Now, sight from each of the Earth positions to the cor-
responding hypothetical positions of Piazzi’s object, and
beyond these to a blackboard or posters hung from an
opposing wall. Imagine that wall to represent part of the
celestial sphere, or “sphere of fixed stars.” Mark the posi-
tions on the wall which lie on the lines of sight between
the three pairs of positions of the Earth and Piazzi’s
object. Those three marks on the wall, represent the
“data” of three of Piazzi’s observations, in terms of the
object’s apparent position relative to the background of
the fixed stars, assuming the observations were made on
successive Sundays. Experimenting with different relative
positions of the two in their orbits, we can see how the
observational phenomenon of apparent retrograde motion
and “looping” can come about (in fact, Piazzi observed a
retrograde motion). (Figure 2.9) Experiment also with
different arrangements of the spheres representing 
Piazzi’s object, as might correspond to different orbits. 

From this kind of exploration, we are struck by an
enormous apparent ambiguity in the observations. What
Piazzi saw in his telescope was only a very faint point of
light, hardly distinguishable from a distant star except by
its motion with respect to the fixed stars from day to day.

FIGURE 2.7. Author Bruce Director demonstrates Piazzi’s sightings. The models on the table in
the foreground represent the three different positions of the Earth. The models on the table in
front of the board represent the corresponding positions of Ceres. Marks 1, 2, and 3 on the board
represent the sightings of Ceres, as seen from the corresponding positions of the Earth.
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On the face of things, there would seem to be no way to
know exactly how far away the object might be, nor in
what exact direction it might be moving in space. Indeed,
all we really have are three straight lines-of-sight, run-
ning from each of the three positions of the Earth to the
corresponding marks on the wall. For all we know, each
of the three positions of Piazzi’s object might be located
anywhere along the corresponding line-of-sight! We do
know the time intervals between the positions we are
looking at (in this case a period of one week), but how
can that help us? Those times, in and of themselves, do

not even tell us how fast the object is really moving, since
it might be closer or farther away, and moving more or
less toward us or away from us.

Try as we will, there seems to be no way to determine
the positions in space from the observations in a deduc-
tive fashion. But haven’t we forgotten what Kepler
taught us, about the primacy of the orbit, over the
motions and positions?

Gauss didn’t forget, and we shall discover his solution
in the coming chapters.

—Jonathan Tennenbaum
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FIGURE 2.8. Paradoxes of apparent motion. 
The apparent motion of Ceres as seen from the Earth (here indicated by the

successive positions 1,2,3 on the wall at the right) is very different from the actual
motion of Ceres in its orbit. In the case illustrated here, the order of points 1,2,3 on the

wall is reversed relative to Ceres’ actual positions; thus, Ceres will appear from Earth to be
moving backwards! The bizarre appearance of retrograde motion and “looping” is due to the

differential in motion of Earth and Ceres, combined with their relative configuration in space,
Earth’s orbital motion being faster than that of Ceres (see Figure 2.9). In reality, the apparent

motion is further complicated by the circumstance that the two bodies are orbiting in different planes.

FIGURE 2.9. Star charts show apparent retrograde motion for the asteroids (a) Ceres, and (b) Pallas, during 1998. 

(a)
(b)
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In investigations such as we are now pursuing, it should
not be so much asked “what has occurred,” as “what has
occurred that has never occurred before.”

—C. Auguste Dupin, 
in Edgar Allan Poe’s 

“The Murders in the Rue Morgue”

With Dupin’s words in mind, let us return to the
dilemma in which we had entangled ourselves
in our discussion in the previous chapter. That

dilemma was connected to the fact, that what Piazzi
observed as the motion of the unknown object against the
fixed stars, was neither the object’s actual path in space,
nor even a simple projection of that path onto the celestial
sphere of the observer, but rather, the result of the motion
of the object and the motion of the Earth, mixed together.

Thanks to the efforts of Kepler and his followers, the
determination of the orbit of the Earth, subsuming its
distance and position relative to the sun on any given day
of the year, was quite precisely known by Gauss’s time.
Accordingly, we can formulate the challenge posed by
Piazzi’s observations in the following way: We can
determine a precise set of positions in space from which

Piazzi’s observations were made, taking into account the
Earth’s own motion. From each of the positions of
Palermo, where Piazzi’s observatory was located, draw a
straight line-of-sight in the direction in which Piazzi saw
the object at that moment. All we can say with certainty
about the actual positions of the unknown object at the
given times, is that each position lies somewhere along the
corresponding straight line. What shall we do?

In the face of such an apparent degree of ambiguity,
any attempt to “curve fit” fails. For, there are no well-
defined positions on which to “fit” an orbit! But, don’t
we know something more, which could help us? After all,
Kepler taught that the geometrical forms of the orbits are
(to within a very high degree of precision, at least) plane
conic sections, having a common focus at the center of the
sun. Kepler also provided a crucial, additional set of con-
straints (to be examined in Chapter 7), which determine
the precise motion in any given orbit, once the “elements”
of the orbit discussed last chapter have been determined.

Now, unfortunately, Piazzi’s observations don’t even
tell us what plane the orbit of Piazzi’s object lies in. How
do we find the right one?

Take an arbitrary plane through the sun. The lines-of-
sight of Piazzi’s observations will intersect that plane in
as many points, each of which is a candidate for the posi-
tion of the object at the given time. Next, try to construct
a conic section, with a focus at the sun, which goes
through those points or at least fits them as closely as pos-
sible. (Alas! We are back to curve-fitting!) (Figure 3.1)

Finally—and this is the substantial new feature—
check whether the time intervals defined by a Keplerian
motion along the hypothesized conic section between the
given points, agree with the actual time intervals of
Piazzi’s observations. If they don’t fit, which will be near-
ly always the case, then we reject the orbit. For example,
if the intersection-points are very far away from the sun,
then Kepler’s constraints would imply a very slow
motion in the corresponding orbit; outside a certain dis-
tance, the corresponding time-intervals would become
larger than the times between Piazzi’s actual observa-
tions. Conversely, if the points are very close to the sun,
the motion would be too fast to agree with Piazzi’s times.

The consideration of time-intervals thus helps to limit
the range of trial-and-error search somewhat, but the
domain of apparent possibilities still remains monstrously
large. With the unique exception of Gauss, astronomers

CHAPTER 3

Method—Not Trial-and-Error

E1

E3

E2

O

P3

P2
P1

FIGURE 3.1. Piazzi’s observations define three “lines of
sight” from three Earth positions E1 ,E2 ,E3 , but do not tell
us where the planet lies on any of those lines. We do know
that the positions lie on some plane through the sun.



felt themselves forced to make ad hoc assumptions and
guesses, in order to radically reduce the range of possibili-
ties, and thereby reduce the trial-and-error procedures to
a minimum.

For example, the astronomer Wilhelm Olbers and
others decided to start with the working assumption that
the sought-for orbit was very nearly circular, in which
case the motion becomes particularly simple. Kepler’s
third constraint (usually referred to as his “Third Law”)
determines a specific rate of uniform motion along the
circle, as soon as the radius of the circular orbit is
known. According to that third constraint, the square of
periodic time in any closed orbit—i.e., a circular or an
elliptical one—as measured in years, is equal to the cube
of the orbit’s major axis, as measured in units of the
major axis of the Earth’s orbit. Next, Olbers took two of
Piazzi’s observations, and calculated the radius which a

circular orbit would have to have, in order to fit those
two observations.

It is easy to see how to do that in principle: The two
observations define two lines of sight, each originating
from the position of the Earth at the moment of observa-
tion. Imagine a sphere of variable radius r, centered at the
sun. (Figure 3.2) For each choice of r, that sphere will
intersect the lines-of-sight in two points, P and Q.
Assuming the planet were actually moving on a circular
orbit of radius r, the points P and Q would be the corre-
sponding positions at the times of the two observations,
and the orbit would be the great circle on the sphere pass-
ing through those two points. On the other hand,
Kepler’s constraints tell us exactly how large is the arc
which any planet would traverse, during the time inter-
val between the two observations, if its orbit were a circle
of radius r. Now compare the arc determined from
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It seems somewhat strange that the
general problem—to determine the

orbit of a heavenly body, without any
hypothetical assumption, from observa-
tions not embracing a great period of time,
and not allowing a selection with a view
to the application of special methods—
was almost wholly neglected up to the
beginning of the present century; or, at
least, not treated by any one in a man-
ner worthy of its importance; since it
assuredly commended itself to mathe-
maticians by its difficulty and elegance,
even if its great utility in practice were
not apparent. An opinion had univer-
sally prevailed that a complete determi-
nation from observations embracing a
short interval of time was impossible,—
an ill-founded opinion,—for it is now
clearly shown that the orbit of a heav-
enly body may be determined quite
nearly from good observations embrac-
ing only a few days; and this without
any hypothetical assumption.

Some ideas occurred to me in the
month of September of the year 1801,
[as I was] engaged at that time on a
very different subject, which seemed
to point to the solution of the great
problem of which I have spoken.

Under such circumstances we not
infrequently, for fear of being too
much led away by an attractive inves-
tigation, suffer the associations of
ideas, which, more attentively consid-
ered, might have proved most fruitful
in results, to be lost from neglect. And
the same fate might have befallen
these conceptions, had they not happi-
ly occurred at the most propitious
moment for their preservation and
encouragement that could have been
selected. For just about this time the
report of the new planet, discovered
on the first day of January of that year
with the telescope at Palermo, was the
subject of universal conversation; and
soon afterwards the observations made
by that distinguished astronomer
Piazzi, from the above date to the
eleventh of February were published.

Nowhere in the annals of astrono-
my do we meet with so great an
opportunity, and a greater one could
hardly be imagined, for showing most
strikingly, the value of this problem,
than in this crisis and urgent necessity,
when all hope of discovering in the
heavens this planetary atom, among
innumerable small stars after the lapse

of nearly a year, rested solely upon a
sufficiently approximate knowledge of
its orbit to be based upon these very
few observations. Could I ever have
found a more seasonable opportunity
to test the practical value of my con-
ceptions, than now in employing them
for the determination of the orbit of
the planet Ceres, which during these
forty-one days had described a geocen-
tric arc of only three degrees, and after
the lapse of a year must be looked for
in a region of the heavens very remote
from that in which it was last seen?

The first application of the method
was made in the month of October
1801, and the first clear night (Decem-
ber 7, 1801), when the planet was
sought for as directed by the numbers
deduced from it, restored the fugitive
to observation. Three other new plan-
ets subsequently discovered, furnished
new opportunities for examining and
verifying the efficiency and generality
of the method. [emphasis in original]

Excerpted from the Preface to the Eng-
lish edition of Gauss’s “Theory of the
Motion of the Heavenly Bodies Moving
about the Sun in Conic Sections.”

C.F. Gauss: ‘To determine the orbit of a heavenly body, 
without any hypothetical assumption’



Kepler’s constraint, with the actual arc between P and Q,
as the length of radius r varies, and locate the value or
values of r, for which the two become coincident. That
determination can easily be translated into a mathemati-
cal equation whose numerical solution is not difficult to
work out. Having found a circular orbit fitting two
observations in that way, Olbers then used the compari-
son with other observations to correct the original orbit. 

Toward the end of 1801 astronomers all over Europe
began to search for the object Piazzi had seen in January-
February, based on approximations such as Olbers’. The
search was in vain! In December of that year, Gauss pub-
lished his hypothesis for the orbit of Ceres, based on his
own, entirely new method of calculation. According to
calculations based on Gauss’s elements, the object would
be located more than 6° to the south of the positions fore-
cast by Olbers, an enormous angle in astronomical terms.
Shortly thereafter, the object was found very close to the
position predicted by Gauss.

Characteristically, Gauss’s method used no trial-and-
error at all. Without making any assumptions on the par-
ticular form of the orbit, and using only three well-
chosen observations, Gauss was able to construct a good
first approximation to the orbit immediately, and then
perfect it without further observations to a high precision,
making possible the rediscovery of Piazzi’s object.

To accomplish this, Gauss treated the set of observa-
tions (including the times as well as the apparent posi-
tions) as being the equivalent of a set of harmonic intervals.
Even though the observations are, as it were, jumbled up
by the effects of projection along lines-of-sight and
motion of the Earth, we must start from the standpoint
that the underlying curvature, determining an entire
orbit from any arbitrarily small segment, is somehow
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lawfully expressed in such an array of intervals. To deter-
mine the orbit of Piazzi’s object, we must be able to iden-
tify the specific, tell-tale characteristics which reveal the
whole orbit from, so to speak, “between the intervals” of
the observations, and distinguish it from all other orbits.
This requires that we conceptualize the higher curvature
underlying the entire manifold of Keplerian orbits, taken
as a whole. Actually, the higher curvature required, can-
not be adequately expressed by the sorts of mathematical
functions that existed prior to Gauss’s work.

We can shed some light on these matters, by the fol-
lowing elementary experimental-geometrical investiga-
tion. Using the familiar nails-and-thread method, con-

FIGURE 3.3. Constructing an ellipse in the shape of the orbit
of Mars.

sun
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FIGURE 3.2. Method to determine the orbit of Ceres,
on the assumption that the orbit is circular. Two
sightings of Ceres define two lines of sight coming
from the Earth positions E1, E2 (the Earth’s positions
at the moments of observation). A sphere around the
sun, of radius r, intersects the lines of sight in two
points P,Q, which lie on a unique great circle C on
that sphere. A sphere of some different radius r′ would
define a different set of points P′, Q′ and a different
hypothetical orbit C′. Determine the unique value of
r, for which the size of the arc PQ agrees with the rate
of motion a planet would really have, if it were
moving according to Kepler’s laws on the circular
orbit C over the time interval between the given
observations.
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struct an ellipse having the shape of the Mars orbit, as fol-
lows. (Figure 3.3) Hammer two nails into a flat board
covered with white paper, at a distance of 5.6 cm from
each other. Take a piece of string 60 cm long and tie each
end to one of the nails—or alternatively, make a loop of
string of length 60 + 5.6 = 65.6 cm, and loop it around
both nails. Pulling the loop tight with the tip of a pencil as
shown, trace an ellipse. The positions of the two nails rep-
resent the foci. The resulting curve will be a scaled-down
replica of Mars’ orbit, with the sun at one of the foci.

Observe that the circumference generated is hardly
distinguishable, by the naked eye, from a circle. Indeed,
mark the midpoint of the ellipse (which will be the point
midway between the foci), and compare the distances
from various points on the circumference, to the center.
You will find a maximum discrepancy of only about one
millimeter (more precisely, 1.3 mm), between the maxi-
mum distance (the distance between the points on the cir-
cumference at the two ends of the major axis connecting
the two foci) and the minimum distance (between the
endpoints of the minor axis drawn perpendicular to the
major axis at its mid-point). Thus, this ellipse’s deviation
from a perfect circle is only on the order of four parts in
one thousand. How was Kepler able to detect and
demonstrate the non-circular shape of the orbit of Mars,
given such a minute deviation, and how could he correct-

ly ascertain the precise nature of the non-circular form,
on the basis of the technology available at his time? 

Observe in Figure 3.4a, that the distances to the sun
(the marked focus) change very substantially, as we move
along the ellipse.

Now, choose two points P1 and P2 anywhere along the
circumference of the ellipse, two centimeters apart. The
interval between them would correspond to successive
positions of Mars at times about seven days apart (actual-
ly, up to about 10 percent more or less than that, depend-
ing on exactly where P1 and P2 lie, relative to the perihe-
lion [closest] and aphelion [farthest] positions). Draw radi-
al lines from each of P1, P2 to the sun, and label the corre-
sponding lengths r1, r2.

Consider what is contained in the curvilinear triangle
formed by those two radial line segments and the small
arc of Mars’ trajectory, from P1 to P2. Compare that arc
with that of analogous arcs at other positions on the orbit,
and consider the following propositions: Apart from the
symmetrical positions relative to the two axes of the
ellipse, no two such arcs are exactly superimposable in any of
their parts. Were we to change the parameters of the
ellipse—for example, by changing the distance between
the foci, by any amount, however small—then none of
the arcs on the new ellipse, no matter how small, would
be superimposable with any of those on the first, in any of
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FIGURE 3.4. (a) The positions of Mars in its orbit around the
sun at equal time intervals of approximately 30 days. Note
that the orbital arcs are longer when Mars is closer to the sun
(faster motion), shorter when Mars is farther away (slower
motion), in such a way that the areas of the corresponding
orbital sectors are equal (Kepler’s “Area Law”). (b) In a
close-up of Mars’ orbit, note the small areas separating the
chords and the orbital arcs, and reflecting the curvature of
the orbit in the given interval. These areas change in size and
shape from one part of the orbit to the next, reflecting a
constantly changing curvature.
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Any successful solution of the problem posed to
Gauss must pivot on conceptualizing the char-
acteristic curvature of Keplerian orbits “in the

small.” Before turning to Kepler’s own investigations
on this subject, it may be helpful to take a brief look at
the closely related case of families of catenaries on the
surface of the Earth—these being more easily accessible
to direct experimentation, than the planetary orbits
themselves.

Catenaries, Monads, and 
A First Glimpse at Modular Functions
When a flexible chain is suspended from two points, and
permitted to assume its natural form under the action of its
own weight, then, the portion of the chain between the
two points forms a characteristic species of curve, known
as a catenary. The ideal catenary is generated by a chain
consisting of very small, but strong links made of a rigid
material, and having very little friction; such a chain is
practically inelastic (i.e., does not stretch), while at the same
time being nearly perfectly flexible, down to the lower lim-
it defined by the diameter of the individual links.

Interestingly, the form of the catenary depends only on
the position of the points of suspension and the length of
the chain between those points, but not on its mass or
weight.

With the help of a suitable, fine-link chain, suspended
parallel to, and not far from, a vertical wall or board (so

that the chain’s form can easily be seen and traced, as
desired), carry out the following investigations.

(For some of these experiments, it is most convenient to
use two nails or long pins, temporarily fixed into the wall
or board, as suspension-points; the nails or pins should be
relatively thin, and with narrow heads, so that the links of
the chain can easily slip over them, in order to be able to
vary the length of the suspended portion. In some experi-
ments it is better to fix only one suspension-point with a
nail, and to hold the other end in your hand.)

Start by fixing any two suspension-points and an arbi-
trary chain-length. (Figure 4.1) Observe the way the
shape of each part of the catenary, so formed, depends on
all the other parts. Thus, if we try to modify any portion
of the catenary, by pushing it sideways or upwards with
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their parts! Thus, each arc is uniquely characteristic of
the ellipse of which it is a part. The same is true among
all species of Keplerian orbits.

Consider what means might be devised to reconstruct
the whole orbit from any one such arc. For example, by
what means might one determine, from a small portion
of a planetary trajectory, whether it belongs to a parabol-
ic, hyperbolic, or elliptical orbit?

Now, compare the orbital arc between P1 and P2 with
the straight line joining P1 and P2. (Figure 3.4b) Togeth-
er they bound a tiny, virtually infinitesimal area. Evident-
ly, the unique characteristic of the particular elliptical

orbit must be reflected somehow in the specific manner in
which that arc differs from the line, as reflected in that
“infinitesimal” area.

Finally, add a third point, P3, and consider the curvi-
linear triangles corresponding to each of the three pairs
(P1, P2), (P2, P3), and (P1, P3), together with the corre-
sponding rectilinear triangles and “infinitesimal” areas
which compose them. The harmonic mutual relations
among these and the corresponding time intervals, lie at
the heart of Gauss’s method, which is exactly the opposite
of “linearity in the small.”

—JT

CHAPTER 4

Families of Catenaries
(An Interlude Considering Some Unexpected Facts About ‘Curvature’)

A B

FIGURE 4.1 A catenary is formed by suspending a chain
between points A and B.
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FIGURE 4.3. Varying the endpoint position of a fixed length
of chain generates a second family of catenaries.
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the tip of a finger, we see that the entire curve is affected,
at least slightly, over its entire length. This behavior of
the catenary reflects Leibniz’s principle of least action,
whereby the entire Universe as a whole, including its
most remote parts, reacts to any event anywhere in the
Universe. There is no “isolated” point-to-point action in
the way the Newtonians claim.

Note that the curvature of each individual catenary
changes constantly along its length, as we go from its
lowest point to its highest point.

Next, generate a family of catenaries, by keeping the
suspension-points fixed, but varying the length of the
chain between those points. (Figure 4.2) Observe the
changes in the form and curvature, and the changes in
the angles, which the chain makes to the horizontal at the
points of suspension, as a function of the suspended
length.

Generate a second family of catenaries, by keeping the
chain length and one of the suspension-points fixed, while
varying the other point. (Figure 4.3) If A is the first sus-
pension-point, and L is the length of the suspended chain,
then the second suspension-point B (preferably held by
hand) can be located anywhere within the circle of radius
L around A. For B on the circumference of the circle, the
catenary degenerates into a straight line. (Or rather, some-
thing close to a straight line, since the latter would require
a physically impossible, “infinite tension” to overcome the
gravitational effect.) Observe the changes of form, as B
moves around A in a circle of radius less than L. Also,
observe the change in the angles, which the catenary
makes to the horizontal at each of the endpoints, as a
function of the position of B. Finally, observe the changes
in the tension, which the chain exerts at the endpoint B,
held by hand, as its position is changed.

Examine this second family of catenaries for the case,
where the suspended length is extremely short. Combin-
ing the variation of the endpoint with variation of length
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FIGURE 4.2. Varying the lengths of the chain generates a
family of catenaries of varying curvatures.

FIGURE 4.4. Release catenary AB to points C,D. Every arc
of a catenary, is itself a catenary!
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whole. In consequence of this, secondly, when we look
at different parts of a given catenary, we are in a sense
looking at different local expressions on the same global
entity. Although various, small portions of the cate-
nary have different curvatures in the sense of visual
geometry, in a deeper sense they all share a common
“higher curvature,” characteristic of the catenary of
which they are parts. Finally, there must be a still
higher mode of curvature, which defines the common
characteristic of the entire family of catenaries. That
latter entity would be congruent with Gauss’s concept
of a modular function for the species of catenaries, as a
special case of his hypergeometric function; the latter
subsuming the catenaries together with the analogous,
crucial features of the Keplerian planetary orbits. (In
the Earth-bound case of elementary catenaries, the
distinction among different catenaries is, to a very
high degree of approximation, merely one of self-sim-
ilar “scaling.” That is not even approximately the case
for Keplerian orbits.)

In a 1691 paper on the catenary problem, Leibniz
notes that Galileo had made the error of identifying the
catenary with a parabola. Galileo’s error, and the discrep-
ancy between the two curves, was demonstrated by
Joachim Jungius (1585-1657) through careful, direct
experiments. However, Jungius did not identify the true
law underlying the catenary. Leibniz stressed, that the
catenary cannot be understood in terms of the geometry
we associate with Euclid, or, later, Descartes, but is sus-
ceptible to a higher form of geometrical analysis, whose
principles are embodied in the so-called “infinitesimal
calculus.” The latter, in turn, is Leibniz’s answer to the
challenge, which Kepler threw out to the world’s geome-
ters in his New Astronomy (Astronomia Nova) of 1609.

—JT
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(families one and two) gives us the manifold of all ele-
mentary catenaries.

Consider, next, the following remarkable proposition:
Every arc of a catenary, is itself a catenary! To wit: On a
catenary with fixed suspension-points A,B, examine the
arc S bounded by any two points C and D on the curve.
(Figure 4.4a) Drive nails through the chain at C and D
into the wall or board behind it. Note that the form of the
chain remains unchanged. If we then remove the parts of
the chain on either side of the arc, or simply release the
chain from its original supports A and B, then the portion
of the chain between C and D will be suspended from
those points as a catenary, while still retaining the origi-
nal form of the arc S. (Figure 4.4b)

Consider another remarkable proposition: The entire
form of a catenary (up to its suspension-points), is implicitly
determined by any of its arcs, however small. Or, to put it
another way: If any arc of one catenary, however small, is
congruent in size and shape to an arc on another cate-
nary, then the two catenaries are superimposable over
their entire lengths. (Only the endpoints might differ, as
when we replaced A,B by C,D to obtain a subcatenary of
an originally longer catenary.) To get some insight into
the validity of this proposition, try to “beat” it by an
experiment, as follows.

Fix one of the endpoints of the arc in question, say C,
by a nail, and mark the position of the other endpoint, D,
on the wall or board behind the chain. (Figure 4.5) Now
taking the end of the chain on D’s side, say B, in your
hand (i.e., the right-hand endpoint, if D is to the right of
C, or vice versa), try to move that endpoint in such a way,
that the corresponding catenary, whose other suspension-
point is now C, always passes through the position D as
verified by the mark on the adjacent wall or board.
Holding to that constraint, we generate a family of cate-
naries having the two common points C and D. In doing
so, observe that the shape of the arc between C and D
continually changes, as the position of the movable end-
point B is changed. This change in shape correlates with
the observation, that the tension exerted by the chain at
its endpoints, changes according to their relative posi-
tions; according to the higher or lower level of tension,
the arc between C and D will be less or more curved.
Only a single, unique position of B (namely, the original
one) produces exactly the same tension and same curva-
ture, as the original arc CD. Our attempt to “beat” the
stated proposition, fails. 

While admittedly deserving more careful examina-
tion, these considerations suggest three things: Firstly,
that all the catenary arcs, which are parts of one and
the same catenary, share a common internal character-
istic, which in turn determines the larger catenary as a

FIGURE 4.5. Only one unique position of B produces the
exact tension and curvature of catenary CD. Different parts
of a given catenary are local expressions of the whole, sharing
a common internal characteristic.



Non-linear curvature, exemplified by our explo-
ration of catenaries, stands in the forefront of
Johannes Kepler’s revolutionary work New

Astronomy. There Kepler bursts through the limitations
of the Copernican heliocentric model, where the plane-
tary orbits were assumed a priori to be circular. 

The central paradox left by Aristarchus and Coperni-
cus was this: Assume the motions of the planets as seen
from the Earth—including the bizarre phenomena of ret-
rograde motion—are due to the fact that the Earth is not
stationary, but is itself moving in some orbit around the
sun. These apparent motions result from combinations of
the unknown true motion of the Earth and the unknown
true motion of the heavenly bodies. How can we deter-
mine the one, without first knowing the other? 

In the New Astronomy, Kepler recounts the exciting
story, of how he was able to solve this paradox by a
process of “nested triangulations,” using the orbits of
Mars and the Earth. Having finally determined the pre-
cise motions of both, a new set of anomalies arose, leading
Kepler to his astonishing discovery of the elliptical orbits
and the “area law” for non-uniform motion. Kepler’s
breakthrough is key to Gauss’s whole approach to the
Ceres problem, one hundred fifty years later. It is there-
fore fitting that we examine certain of Kepler’s key steps
in this and the following chapter.

As to mere shape, in fact, the orbits of the Earth, Mars,
and most of the other planets (with the exception of Mer-
cury and Pluto) are very nearly perfect circles, deviating
from a perfect circular form only by a few parts in a
thousand. The centers of these near-circles, on the other
hand, do not coincide with the sun! Consequently, there
is a constant variation in the distance between the planet
and the sun in the course of an orbit, ranging between the
extreme values attained at the perihelion (shortest dis-
tance) and the aphelion (farthest distance).

As Kepler noted, the perihelion and aphelion are at
the same time the chief singularities of change in the
planet’s rate of motion along the orbit: the maximum of
velocity occurs at the perihelion, and the minimum at the
aphelion.

In an attempt to account for this fact, while trying to
salvage the hypothesis of simple circular motion as ele-
mentary, Ptolemy had devised his theory of the “equant.”
According to that theory, the Earth is no longer the exact
center of the motion, but rather another point B. (Figure

5.1) The planet is “driven” around its circular orbit
(called an “eccentric” because of the displacement of its
center from the position of the Earth) in such a way, that
its angular motion is uniform with respect to a third point
(the “equant”), located on the line of apsides opposite the
Earth from the center of the eccentric circle.* In other
words, the planet moves as if it were swept along the
orbit by a gigantic arm, pivoted at the equant and turning
around it at a constant rate.

On the basis of his precise data for Earth and Mars,
Kepler was able to demolish Ptolemy’s equant once and
for all. This immediately raised the question: If simple
rotational action is excluded as the underlying basis for
planetary motion, then what new principle of action
should replace it?

Step-by-step, already beginning in the Mysterium Cos-
mographicum (Cosmographic Mystery), Kepler developed
his “electromagnetic” conception of the solar system,
referring directly to the work of the English scientist
William Gilbert, and implicitly to the investigations of
Leonardo da Vinci and others on light, as well as Nico-
laus of Cusa. Kepler identifies the sun as the original

CHAPTER 5

Kepler Calls for a ‘New Geometry’

__________

* Readers should remember that in Ptolemy’s astronomical model, the
sun and planets are supposed to orbit about the Earth.
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equantEarth

planet or sun

B

FIGURE 5.1. To account for the differing rates of motion of
the planet, Ptolemy’s description placed the Earth at an
eccentric (off-center) location, with the planet’s uniform
angular motion centered at a third, “equant” point.



source and “organizing center” of the whole system,
which is “run” on the basis of a harmonically ordered,
but otherwise constantly changing activity of the sun vis-à-
vis the planets. Kepler’s conception of that activity, has
nothing to do with the axiomatic assumption of smooth,
featureless, linear forms of “push-pull” displacement in
empty space, promoted by Sarpi and Galileo, and revived
once more in Newton’s solar theory, in which the sun is
degraded to a mere “attracting center.”

On the contrary! According to Kepler, the solar activi-
ty generates a harmonically ordered, everywhere-dense
array of events of change, whose ongoing, cumulative result
is reflected in—among other things—the visible motion
of the planets in their orbits.

The need to elaborate a new species of mathematics,
able to account for the integration of dense singularities,
emerges ever more urgently in the course of the New
Astronomy, as Kepler investigates the revolutionary impli-
cations of his own observation, that the rate of motion of a
planet in its orbit is governed by its distance from the sun.
This relationship emerged most clearly, in comparing the
motions at the perihelion and aphelion. The ratio of the
corresponding velocities was found to be precisely equal
to the inverse ratio of the two extreme radial distances.
For good reasons, Kepler chose to express this, not in
terms of velocities, but rather in terms of the time
required for the planet to traverse a given section of its
orbit.*

Kepler’s Struggle with Paradox
Let us join Kepler in his train of thought. While still
operating with the approximation of a planetary orbit as
an “eccentric circle,” Kepler formulates this relationship
in a preliminary way as follows: It has been demonstrat-
ed, 

that the elapsed times of a planet on equal parts of the
eccentric circle (or equal distances in the ethereal air) are
in the same ratio as the distances of those spaces from the
point whence the eccentricity is reckoned [i.e., the
sun–JT]; or more simply, to the extent that a planet is
farther from the point which is taken as the center of the
world, it is less strongly urged to move about that point.

Since the distances are constantly changing, the exis-
tence of such a relationship immediately raises the ques-
tion: How does the temporally extended motion—as, for
example, the periodic time corresponding to an entire
revolution of the planet—relate to the magnitudes of
those constantly varying “urges” or “impulses”?

A bit later, Kepler picks up the problem again. To fol-
low Kepler’s discussion, draw the following diagram.
(Figure 5.2) Construct a circle and its diameter and label
the center B. To the right of B mark another point A.
The circumference of the circle represents the planetary
orbit, and point A represents the position of the sun.
Kepler writes:

Since, therefore, the times of a planet over equal parts of
the eccentric, are to one another, as the radial distances
of those parts [from the sun–JT], and since the individ-
ual points of the entire . . . eccentric are all at different
distances, it was no easy task I set myself, when I sought
to find how one might obtain the sums of the individual
radial distances. For, unless we can find the sum of all of
them (and they are infinite in number) we cannot say
how much time has elapsed for any one of them! Thus,
the whole equation will not be known. For, the whole
sum of the radial distances is, to the whole periodic time, as
any partial sum of the distances is to its corresponding time.
[Emphasis added]

I consequently began by dividing the eccentric into 360
parts, as if these were least particles, and supposed that
within one such part the distance does not change . . . .

However, since this procedure is mechanical and
tedious, and since it is impossible to compute the whole
equation, given the value for one individual degree [of
the eccentric–JT] without the others, I looked around
for other means. Considering, that the points of the
eccentric are infinite in number, and their radial lines are
infinite in number, it struck me, that all the radial lines
are contained within the area of the eccentric. I remem-
bered that Archimedes, in seeking the ratio of the cir-
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__________
* Cf. Fermat’s later work on least-time in the propagation of light.

AB
aphelion perihelion

FIGURE 5.2. Kepler’s original hypothesis: The planetary
orbits are circles whose centers are somewhat eccentric with
regard to the sun. Kepler observed that the planet moves
fastest at the perihelion, slowest at the aphelion, in apparent
inverse proportion to the radial distances.



cumference to the diameter, once divided a circle thus
into an infinity of triangles—this being the hidden force
of his reductio ad absurdum. Accordingly, instead of
dividing the circumference, as before, I now cut the area
of the eccentric into 360 parts, by lines drawn from the
point whence the eccentricity is reckoned [A, the position
of the sun–JT] . . . .

This brief passage marks a crucial breakthrough in
the New Astronomy. To see more clearly what Kepler has
done, on the same diagram as above, mark two positions
P1, P2 of the planet on the orbit, and draw the radial lines
from the sun to those positions—i.e., AP1 and AP2. (Fig-
ure 5.3) Kepler has dropped the idea of using the length
of the arc between P1 and P2 as the appropriate measure
of the action generating the orbital motion, and turned
instead to the area of the curvilinear triangle bounded by
AP1, AP2 and the orbital arc from P1 to P2.

We shall later refer to such areas as “orbital sectors.”
Kepler describes that area as the “sum” of the “infinite
number” of radial lines AQ, of varying lengths, obtained
as Q passes through all the positions of the planet from P1
to P2! Does he mean this literally? Or, is he not express-
ing, in metaphorical terms, the coherence between the
macroscopic process, from P1 to P2, and the peculiar “cur-
vature,” which governs events within any arbitrarily
small interval of that process?

The result, in any case, is a geometrical principle,
which Kepler subsequently demonstrated to be empiri-
cally valid for the motion of all known planets in their
orbits: The time, which a planet takes in passing from any
position P1 to another position P2 in its orbit, is proportional

to the area of the sector bounded by the radial lines AP1, AP2,
and the orbital trajectory P1P2, or, in other words, the area
swept out by the radial line AP. This is Kepler’s famous
“Second Law,” otherwise known as the “Area Law.” All
that is needed in addition, to arrive at an extremely pre-
cise construction of planetary motion, is to replace the
“eccentric circle” approximation, by a true ellipse, as
Kepler himself does in the later sections of the New
Astronomy. We shall attend to that in the next chapter.

Time Produced by Orbital Action?
Are you not struck by something paradoxical in Kepler’s
formulation? Does he not express himself as if nearly to
say, that time is produced by the orbital action? Or, does
this only seem paradoxical to us (but not to Kepler!),
because we have been indoctrinated by the kinematic
conceptions of Sarpi, Descartes, and Newton?

There is another paradox implicit here, which Kepler
himself emphasized. Sticking for a moment to the eccen-
tric-circle approximation for the orbit, Kepler found a very
simple way to calculate the areas of the sectors. In our ear-
lier drawing, choose P1 to be the intersection of the cir-
cumference and the line of apsides passing through B and
A. (Figure 5.4) P1 now represents the position of the plan-
et at the point of perihelion. Take P2 to be any point on the
circumference in the upper half of the circle. If A and B
were at the same place (i.e., if the sun were at the geometri-
cal center of the orbit), then the sectoral area between AP1
and AP2 would simply be proportional to the angle formed
at A between those two lines. Otherwise, we can transform
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P2

P1

FIGURE 5.3. Assuming the “momentary” orbital velocities
are inversely proportional to the radial distances, Kepler
tries to “add up” the radii to determine how much time the
planet needs to go from one point of the orbit to another.

FIGURE 5.4. Kepler’s method for calculating the area
swept out by the radial line from the sun to a planet on
the assumption that the orbit is an eccentric circle, i.e., a
circle whose center B is displaced from the position of the
sun A.



the sector in question into a simple, center-based circular
sector, by adding to it the triangular area ABP2.

Indeed, as can be seen in Figure 5.5, the sum of the
two areas is the circular sector between BP1 and BP2.
The area of the circular sector, on the other hand, is pro-
portional to the angle formed by the radial lines BP1,
BP2 at the circle’s center B, as well as to the circular arc
from P1 to P2. Turning this around, we can express the
sector AP1P2 , which, according to Kepler, tells us the
time elapsed between the two positions, as the result of
subtracting the triangle ABP2 from the sector BP1P2. In
other words: The time T to go from P1 to P2, is propor-
tional to the area AP1P2 , which in turn is equal to the
area of the circular sector between BP1 and BP2 minus
the area of triangle ABP2. Of these two areas, the first is
proportional to the angle P1BP2 at the circle’s center and
to the circular arc P1P2; while the second is equal to the
product of the base of triangle ABP2 , namely the length
AB, times its height. The height is the length of the per-
pendicular line P2 N drawn from the orbital position P2
to the line of apsides, which (up to a factor of the radius)
is just the sine of the angle P1BP2. In this way—leaving
aside, for the moment, a certain modification required
by the non-circularity of the orbit—Kepler was able to
calculate the elapsed times between any two positions in
an orbit.

These simple relationships, which are much easier to
express in geometrical drawings than in words, are crucial
to the whole development up to Gauss. They involve the
following peculiarity, highlighted by Kepler: The elapsed
time is shown to be a combined function of the indicated
angle or circular arc on the one side, and the length of the
perpendicular straight line drawn from P2 to the line of
apsides, on the other. Now, as Kepler notes, in implicit ref-

28

erence to Nicolaus of Cusa, those two magnitudes are “het-
erogeneous”; one is essentially a curved magnitude, the
other a straight, linear one. (That is, they are incommen-
surable; in fact, as Cusa discovered, the curve is “transcen-
dental” to the straight line.) That heterogeneity seems to
block our way, when we try to invert Kepler’s solution,
and to determine the position of a planet after any given
elapsed time (i.e., rather than determining the time as it
relates to any position). In fact, this is one of the problems
which Gauss addressed with his “higher transcendents,”
including the hypergeometric function.

Let us end this discussion with Kepler’s own chal-
lenge to the geometers. For the present purposes—defer-
ring some further “dimensionalities” of the problem
until Chapter 6—you can read Kepler’s technical terms
in the following quote in the following way. What
Kepler calls the “mean anomaly,” is essentially the
elapsed time; the term, “eccentric anomaly,” refers to the
angle subtended by the planetary positions P1, P2 as seen
from the center B of the circle—i.e., the angle P1BP2.
Here is Kepler:

But given the mean anomaly, there is no geometrical
method of proceeding to the eccentric anomaly. For, the
mean anomaly is composed of two areas, a sector and a
triangle. And while the former is measured by the arc of
the eccentric, the latter is measured by the sine of that
arc. . . . And the ratios between the arcs and their sines
are infinite in number [i.e., they are incommensurable as
functional “species”–ed.]. So, when we begin with the
sum of the two, we cannot say how great the arc is, and
how great its sine, corresponding to the sum, unless we
were previously to investigate the area resulting from a
given arc; that is, unless you were to have constructed
tables and to have worked from them subsequently.

That is my opinion. And insofar as it is seen to lack
geometrical beauty, I exhort the geometers to solve me
this problem:

Given the area of a part of a semicircle and a point on
the diameter, to find the arc and the angle at that point,
the sides of which angle, and which arc, encloses the giv-
en area. Or, to cut the area of a semicircle in a given ratio
from any given point on the diameter.

It is enough for me to believe that I could not solve
this, a priori, owing to the heterogeneity of the arc and
sine. Anyone who shows me my error and points the
way will be for me the great Apollonius.*

—JT

A NB
P1

P2

__________
* Apollonius of Perga (c. 262-200 B.C.), Greek geometer, author of

On Conic Sections, the definitive Classical treatise. Drawn by the
reputation of the astronomer Aristarchus of Samos, he lived and
worked at Alexandria, the great center of learning of the Hellenis-
tic world, where he studied under the successors of Euclid. SEE

article, page 100, this issue.–Ed.

FIGURE 5.5. The swept-out area, AP1 P2 , is equal to the
circular sector P1 BP2 , minus the triangular area AP2 B.



Agreat crisis and a great opportunity were created by
Giuseppe Piazzi’s startling observations of a new
object in the sky, in the early days of 1801.

Astronomers were now forced to confront the problem of
determining the orbit of a planet from only a few observa-
tions. Before Piazzi’s discovery, C.F. Gauss had considered
this problem purely for its intellectual beauty, although
anticipating its eventual practical necessity. Others, mired in
purely practical considerations, ignored Beauty’s call, only to
be caught wide-eyed and scrambling when presented with
the news from Piazzi’s observatory in Palermo. Gauss alone
had the capacity to unite Beauty with Necessity, lest human-
ity lose sight of the newly expanded Universe.

As we continue along the circuitous path to rediscov-
ering Gauss’s method for determining the orbit of Ceres,
we are compelled to linger a little longer at the beginning
of an earlier century, when a great crisis and opportunity
arose in the mind of someone courageous and moral
enough to recognize its existence. In those early years of
the Seventeenth century, as Europe disintegrated into the
abyss of the Thirty Years War, Johannes Kepler’s quest
for beauty led him to the discoveries that anticipated the
crisis Gauss would later face, and laid the groundwork
for its ultimate solution.

In the last chapter, we retraced the first part of Kepler’s
great discoveries: that the time which a planet takes to pass
from one position of its orbit to another, is proportional to
the area of the sector formed by the lines joining each of
those two planetary positions with the sun, and the arc of
the orbit between the two points.* But, this discovery of
Kepler was immediately thrown into crisis when he com-
pared his calculations to the observed positions of Mars,
and the time elapsed between those observations. This
combination of the change in the observed position and the
time elapsed, is a reflection of the curvature of the orbit.
Kepler had assumed that the planets orbited the sun in
eccentric circles. If, however, the planet were moving on
an arc that is not circular, it could be observed in the same
positions, but the elapsed time between observations

would be different than if it were moving on an eccentric
circle. When Kepler calculated his new principle using dif-
ferent observations of the planet Mars, the results were not
consistent with a circular planetary orbit.

Kepler’s Account
The following extracts from Kepler’s New Astronomy
trace his thinking as he discovers his next principle.
Uniquely, Kepler left us with a subjective account of his
discovery. Speaking across the centuries, Kepler provides
an important lesson for today’s “Baby Boomers,” who, so
lacking the agapē to face a problem and discover a cre-
ative solution, desperately need the benefit of Kepler’s
honest discussion of his own mental struggle.

You see, my thoughtful and intelligent reader, that the
opinion of a perfect eccentric circle drags many incredi-
ble things into physical theories. This is not, indeed,
because it makes the solar diameter an indicator for the
planetary mind, for this opinion will perhaps turn out to
be closest to the truth, but because it ascribes incredible
facilities to the mover, both mental and animal.

Although our theories are not yet complete and per-
fect, they are nearly so, and in particular are suitable for
the motion of the sun, so we shall pass on to quantitative
consideration.

It was in the “nearly so,” the infinitesimal, that
Kepler’s crisis arose. He continues, a few chapters later:

You have just seen, reader, that we have to start anew. For
you can perceive that three eccentric positions of Mars and
the same number of distances from the sun, when the law
of the circle is applied to them, reject the aphelion found
above (with little uncertainty). This is the source of our
suspicion that the planet’s path is not a circle.

Having come to the realization that he must abandon
the hypothesis of circular orbits, he first considers ovals.

Clearly, then, the orbit of the planet is not a circle, but
comes in gradually on both sides and returns again to the
circle’s distance at perigee. One is accustomed to call the
shape of this sort of path “oval.”

Yet, after much work, Kepler had to admit that this
too was incorrect:

When I was first informed in this manner by [Tycho] Bra-
he’s most certain observations that the orbit of the planet is
not exactly circular, but is deficient at the sides, I judged
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__________
* This principle has now become known as Kepler’s Second Law,

even though it was the first of Kepler’s so-called three laws to be dis-
covered. Kepler never categorized his discoveries of principles into a
numbered series of laws. The codification of Kepler’s discovery, to
fit academically acceptable Aristotelean categories, has masked the
true nature of Kepler’s discovery and undermined the ability of oth-
ers to know Kepler’s principles, by rediscovering them for them-
selves.

CHAPTER 6

Uniting Beauty and Necessity
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that I also knew the natural cause of the deflection from its
footprints. For I had worked very hard on that subject in
Chapter 39. . . . In that chapter I ascribed the cause of the
eccentricity to a certain power which is in the body of the
planet. It therefore follows that the cause of this deflecting
from the eccentric circle should also be ascribed to the
same body of the planet. But then what they say in the
proverb—“A hasty dog bears blind pups”—happened to
me. For, in Chapter 39, I worked very energetically on the
question of why I could not give a sufficiently probable
cause for a perfect circle’s resulting from the orbit of a
planet, as some absurdities would always have to be attrib-
uted to the power which has its seat in the planet’s body.
Now, having seen from the observations that the planet’s
orbit is not perfectly circular, I immediately succumbed to
this great persuasive impetus. . . .

Self-consciously describing the emotions involved:

And we, good reader, can fairly indulge in so splendid a
triumph for a little while (for the following five chapters,
that is), repressing the rumors of renewed rebellion, lest
its splendor die before we shall go through it in the prop-
er time and order. You are merry indeed now, but I was
straining and gnashing my teeth.

And, continuing: 

While I am thus celebrating a triumph over the motions
of Mars, and fetter him in the prison of tables and the
leg-irons of eccentric equations, considering him utterly
defeated, it is announced again in various places that the
victory is futile, and war is breaking out again with full
force. For while the enemy was in the house as a captive,
and hence lightly esteemed, he burst all the chains of the
equations and broke out of the prison of the tables. That
is, no method administered geometrically under the
direction of the opinion of Chapter 45 was able to emu-
late in numerical accuracy the vicarious hypotheses of
Chapter 16 (which has true equations derived from false
causes). Outdoors, meanwhile, spies positioned through-
out the whole circuit of the eccentric—I mean the true
distances—have overthrown my entire supply of physi-
cal causes called forth from Chapter 45, and have shaken
off their yoke, retaking their liberty. And now there is
not much to prevent the fugitive enemy’s joining forces
with his fellow rebels and reducing me to desperation,
unless I send new reinforcements of physical reasoning
in a hurry to the scattered troops and old stragglers, and,
informed with all diligence, stick to the trail without
delay in the direction whither the captive has fled. In the
following chapters, I shall be telling of both these cam-
paigns in the order in which they were waged.

In another place, Kepler writes: 

“Galatea seeks me mischievously, the lusty wench, 
She flees the willows, but hopes I’ll see her first.”

It is perfectly fitting that I borrow Virgil’s voice to

sing this about Nature. For the closer the approach to
her, the more petulant her games become, and the more
she again and again sneaks out of the seeker’s grasp, just
when he is about to seize her through some circuitous
route. Nevertheless, she never ceases to invite me to seize
her, as though delighting in my mistakes.

Throughout this entire work, my aim has been to
find a physical hypothesis that not only will produce dis-
tances in agreement with those observed, but also, and at
the same time, sound equations, which hitherto we have
been driven to borrow from the vicarious hypothesis of
Chapter 16. . . .

And, after much work, he finally arrives at the answer
the Universe has been telling him all along:

The greatest scruple by far, however, was that, despite my
considering and searching about almost to the point of
insanity, I could not discover why the planet, to which a
reciprocation LE on the diameter LK was attributed with
such probability, and by so perfect an agreement with the
observed distances, would rather follow an elliptical path,
as shown by the equations. O ridiculous me! To think
that reciprocation on the diameter could not be the way to
the ellipse! So it came to me as no small revelation that
through the reciprocation an ellipse was generated. . . .

With the discovery of an additional principle, Kepler
has accomplished the next crucial step along the road
Gauss would later extend by the determination of the
orbit of Ceres. The discovery that the shape of the orbit
of the planet Mars (later generalized to all planets) was an
ellipse, would be later generalized even further to include
all conic sections, when other heavenly bodies, such as
comets, were taken into account.

But now a new crisis developed for Kepler. What we
discussed in the last chapter—the elegant way of calculat-
ing the area of the orbital sector, which is proportional to
the elapsed time—no longer works for an ellipse. For
that method was discovered when Kepler was still
assuming the shape of the planet’s orbit to be a circle.

To grasp this distinction, the reader will have to make
the following drawings:

First re-draw Figure 5.5. (Figure 6.1) [For the read-
er’s convenience, figures from previous chapters are dis-
played again when re-introduced.]

The determination of the area formed by the motion
of the planet in a given interval of time, was defined as
the “sum” of the infinite number of radial lines obtained
as the planet moves from P1 to P2. This “sum,” which
Kepler represents by the area AP1P2 , is calculated by sub-
tracting the area of the triangle ABP2 from the circular
sector BP1P2. But, as noted previously, determining the
area of triangle ABP2 depended on the sine of the angle
ABP2, i.e., P2N, which Kepler, as a student of Cusa, rec-
ognized was transcendental to the arc P1P2, thus making



a direct algebraic calculation impossible.
But now that Kepler has abandoned the circular orbit

for an elliptical one, this problem is compounded. For the
circular arc is characterized by constant uniform curva-
ture, while the curvature of the ellipse is non-uniform,
constantly changing. Thus, if we abandon the circular
orbit and accept the elliptical one, as reality demands, the
simplicity of the method for determining the area of the
orbital sector disappears. 

A Dilemma, and a Solution
What a dilemma! Our Reason, following Kepler, leads
us to the hypothesis that the area of the orbital sector
swept out by the planet, is proportional to the time it
takes for the planet to move through that section of its
orbit. But, following Kepler, our Reason, guided by the
actual observations of planetary orbits, also leads us to
abandon the circular shape of the orbit, in favor of the
ellipse, and to lose the elegant means for applying the
first discovery.

This is no time to emulate Hamlet. Our only way out
is to forge ahead to new discoveries. As has been the case
so far, Kepler does not let us down.

For the next step, the reader will have to draw another
diagram. (Figure 6.2) This time draw an ellipse, and
call the center of the ellipse B and the focus to the right of
the center A. Call the point where the major axis inter-
sects the circumference of the ellipse closest to A, point P1.
Mark another point on the circumference of the ellipse
(moving counter-clockwise from P1), point P2. As in the
previous diagram, A represents the position of the sun, P1
and P2 represent positions of the planet at two different
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points in time, and the circumference of the ellipse repre-
sents the orbital path of the planet. 

Now compare the shape of the orbital sector in the
two different orbital paths, circular and elliptical, as
shown in Figures 6.1 and 6.2. The difference in the type
of curvature between the two is reflected in the type of
change in triangle ABP2 as the position P2 changes. In the
circular orbit, the length of line P2 A changes, but the
length of line P2 B, being a radius of the circle, remains
the same. In the elliptical orbit, the length of the line P2 B
also changes. In fact, the rate of change of the length of
line P2 B is itself constantly changing. 

To solve this problem, Kepler discovers the following
relationship. Draw a circle around the ellipse, with the
center at B and the radius equal to the semi-major axis.
(Figure 6.3b) This circle circumscribes the ellipse, touch-
ing it at the aphelion and perihelion points of the orbit.
Now draw a perpendicular from P2 to the major axis,
striking that axis at a point N, and extend the perpendic-
ular outward until it intersects the circle, at some point Q.
Recall one of the characteristics of the ellipse (Figure
1.7b): An ellipse results from “contracting” the circle in
the direction perpendicular to the major axis according to
some fixed ratio. In other words, the ratio NP2 : NQ has
the same constant value for all positions of P2 . Or, said
inversely, the circle results from “stretching” the ellipse
outward from the major axis by a certain constant factor,
as if on a pulled rubber sheet. It is easy to see that the val-
ue of that factor must be the ratio of the major to minor
axes of the ellipse.

A NB
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FIGURE 6.1. Kepler’s method of calculating swept-out
areas for an eccentric circular orbit.

FIGURE 6.2. Kepler’s elliptical orbit hypothesis. Here, length
P2 B is not constant, but constantly changing at a changing
rate. What lawful process now underlies the generation of
swept-out areas?
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With a bit of thought, it might occur to us that the
result of such “stretching” will be to change all areas in
the figure by the same factor. Look at Figure 6.3b from
that standpoint. What happens to the elliptic sector which
we are interested in, namely P1 P2 A, when we stretch out
the ellipse in the indicated fashion? It turns into the cir-
cular sector P1 QA! Accordingly, the area of the elliptical
sector swept out by P2 , and that swept out on the circle
by Q, stay in a constant ratio to each other throughout the
motion of P2. Since the planet (or rather, the radial line
AP2 ) sweeps out equal areas on the ellipse in equal times,
in accordance with Kepler’s “area law,” the correspond-
ing point Q (and radial line AQ) will do the same thing
on the circle.

This crucial insight by Kepler unlocks the whole prob-
lem. First, it shows that Q is just the position which the
planet would occupy, were it moving on an eccentric-circu-
lar orbit in accordance with the “area law,” as Kepler had
originally believed. The difference in position between Q
and the actual position P2 (as observed, for example, from
the sun) reflects the non-circular nature of the actual orbit.
Second, the constant proportionality of the swept-out areas
permits Kepler to reduce the problem of calculating the
motion on the ellipse, to that of the eccentric circle, whose
solution he has already obtained. (SEE Chapter 5)

Further details of Kepler’s calculations need not con-
cern us here. What is most important to recognize, is the

triple nature of the deviation of a real planet’s motion
from the hypothetical case of perfect circular motion
with the sun at the center—a deviation which Kepler
measured in terms of three special angles, called “anom-
alies.” First, the sun is not at the center. Second, the orbit is
not circular, but elliptical. Third, the speed of the planet
varies, depending upon the planet’s distance from the sun.
For which reason, Kepler’s approach implies reconceptu-
alizing, from a higher standpoint, what we mean by the
“curvature” of the orbit. Rather than being thought of
merely as a geometrical “shape,” on which the planet’s
motion appears to be non-uniform, the “curvature” must
instead be conceived of as the motion of the planet moving
along the curve in time—that is, we must introduce a new
conception of physical space-time.

In a purely circular orbit, the uniformity of the plan-
et’s spatial and temporal motions coincide. That is, the
planet sweeps out equal arcs and equal areas in equal
times as it moves. Such motion can be completely repre-
sented by a single angular measurement.

In true elliptical orbits, however, the motion of the
planet can only be completely described by a combination
of three angular measurements, which are the three
anomalies described below. The uniformity of the “cur-
vature” of the planet’s motion finds expression in
Kepler’s equal-area principle, from the more advanced
physical space-time standpoint.

B
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(a)
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FIGURE 6.3. Ironies of Keplerian motion. (a) M is the position a planet would reach after a given elapsed time, assuming it started at P1
and travelled on the circular orbit with the sun at the center B. (b) P is the corresponding position on the elliptical orbit with the sun at
the focus A. The orbital period is the same as (a), but the arc lengths travelled vary with the changing distance of the planet from the
sun (Kepler’s “area law”). Q is the position the planet would reach if it were moving on the circle, but with the sun at A rather than the
center B. For equal times, the area P1MB will be equal to area P1 QA, the latter being in a constant ratio to the area P1 P2 A.



Kepler’s conception follows directly from the
approach to experimental physics established by his
philosophical mentor Nicolaus of Cusa. This may rankle
the modern reader, whose thinking has been shaped by
Immanuel Kant’s neo-Aristotelean conceptions of space
and time. Kant considered three-dimensional “Euclid-
ean” space, and a linear extension of time, to be a true
reflection of reality. Gauss rejected Kant’s view, calling it
an illusion, and insisting instead that the true nature of
space-time can not be assumed a priori from purely math-
ematical considerations, but must be determined from
the physical reality of the Universe.

Kepler’s Three Anomalies
The first anomaly is the angle formed by a line drawn
from the sun to the planet, and the line of apsides (P2 AP1
in Figure 6.3b). Kepler called this angle the “equated
anomaly.” In Gauss’s time it was called the “true anom-
aly.” The true anomaly measures the true displacement
along the elliptical orbit. The next two anomalies can be
considered as two different “projections,” so to speak, of
the true anomaly.

The second anomaly, called the “eccentric anomaly,” is
the angle QBP1, which measures the area swept out had
the planet moved on a circular arc, rather than an ellipti-
cal one. Since this area is proportional to the time elapsed,
it is also proportional, although obviously not equal, to
the true orbital sector swept out by the planet.

The third anomaly, called the “mean anomaly,” corre-
sponds to the elapsed time, as measured either by area
AP1 P2 or by AP1 Q. It can be usefully represented by the
position and angle F at B formed by an imaginary point M
moving on the circle, whose motion is that which a hypo-
thetical planet would have, if its orbit were the circle and
if the sun were at center B rather than A! (Figure 6.4) As
a consequence of Kepler’s Third Law, the total period of
the imaginary orbit of M, will coincide with that of the
real planet. Hence, if M is taken to be “synchronized” in
such a way that the positions of M and the actual planet
coincide at the perihelion point P1, then M and the planet
will return to that same point simultaneously after hav-
ing completed one full orbital cycle. 

Kepler established a relationship between the mean
and eccentric anomalies, such that, given the eccentric,
the mean can be approximately calculated. The inverse
problem—that is, given the time elapsed, to calculate the
eccentric anomaly—proved much more difficult, and
formed part of the considerations provoking G.W. Leib-
niz to develop the calculus.

The relationship among these three anomalies is a reflec-
tion of the curvature of space-time relevant to the harmonic
motion of the planet’s orbit, just as the catenary function
described in Chapter 4, reflects such a physical principle in
the gravitational field of the Earth. This threefold relation-
ship is one of the earliest examples of what Gauss and Bern-
hard Riemann would later develop into hypergeometric, or
modular functions—functions in which several seemingly
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FIGURE 6.4. Non-uniform motion in an elliptical orbit is characterized by the “polyphonic” relationship between the “eccentric anomaly”
(angle E), “true anomaly” (angle T), and “mean anomaly” (angle F). (a) As the planet moves from perihelion to aphelion, the true
anomaly is greater than the eccentric, which is greater than the mean. (b) After the planet passes aphelion, these relationships are reversed.
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At this point in our journey toward Gauss’s deter-
mination of the orbit of Ceres, before plunging
into the thick of the problem, it will be worth-

while to look ahead a bit, and to take note of a crucial

irony embedded in Gauss’s use of a generalized form of
Kepler’s “Three Laws” for the motion of heavenly bodies
in conic-section orbits.

On the one hand, we have the harmonic ordering of the
solar system as a whole, whose essential idea is put for-
ward by Plato in the Timaeus, and demonstrated by
Kepler in detail in his Mysterium Cosmographicum (Cos-
mographic Mystery) and Harmonice Mundi (The Harmony
of the World). (Figure 7.1a) A crucial feature of that
ordering, already noted by Kepler, is the existence of a
singular, “dissonant” orbital region, located between
Mars and Jupiter—a feature whose decisive confirmation
was first made possible by Gauss’s determination of the
orbit of Ceres. (Figure 7.1b)

Although Kepler’s work in this direction is incomplete
in several respects, that harmonic ordering in principle
determines not only which orbits or arrays of planetary
orbits are possible, but also the physical characteristics of
the planets to be found in the various orbits. Thus, the
Keplerian ordering of the solar system is not only analo-
gous to Mendeleyev’s natural system of the chemical ele-
ments, but ultimately expresses the same underlying cur-
vature of the Universe, manifested in the astrophysical
and microphysical scales.* 

On the other hand, we have Kepler’s constraints for
the motion of the planets within their orbits, developed
step-by-step in the course of his New Astronomy (1609),
Harmony of the World (1619), and Epitome Astronomiae
Copernicanae (Epitome of Copernican Astronomy) (1621).

CHAPTER 7

Kepler’s ‘Harmonic Ordering’
Of the Solar System

FIGURE 7.1 (a) Kepler’s “harmonic ordering” of the solar
system. The planetary orbits are nested according to the ratios
of inscribed and circumscribed Platonic (regular) solids, in
this model from the “Mysterium Cosmographicum.”

incommensurable cycles are unified into a One.
Kepler describes the relationship between these anom-

alies this way (we have changed Kepler’s labelling to cor-
respond to our diagram):

The terms “mean anomaly,” “eccentric anomaly,” and
“equated anomaly” will be more peculiar to me. The
mean anomaly is the time, arbitrarily designated, and its
measure, the area P1QA. The eccentric anomaly is the
planet’s path from apogee, that is, the arc of the ellipse
P1P2, and the arc P1Q which defines it. The equated
anomaly is the apparent magnitude of the arc P1Q as
viewed from A, that is, the angle P1 AP2.

All three anomalies are zero at perihelion. As the

planet moves toward aphelion, all three anomalies
increase, with the true always being greater than the
eccentric, which in turn is always greater than the mean.
At aphelion, all three come together again, equaling 180°.
As the planet moves back to perihelion, this is reversed,
with the mean being greater than the eccentric, which in
turn is greater than the true, until all three come back
together again at the perihelion. 

Suffice it to say, for now, that Gauss’s ability to “read
between the anomalies,” so to speak, was a crucial part of
his ability to hear the new polyphonies sounded by Piazzi’s
discovery—the unheard polyphonies that the ancient
Greeks called the “music of the spheres.”

—BD



These constraints provide the basis for calculating, to a
very high degree of precision, the position and motion of
a planet or other object at any time, once the basic spatial
parameters of the orbit itself (the “elements” described in
Chapter 2) have been determined. The three constraints
go as follows.

1. The area of the curvilinear region, swept out by the
radial line connecting the centers of the given planet
and the sun, as the planet passes from any position in
its orbit to another, is proportional in magnitude to the
time elapsed during that motion. Or, to put it another
way: If P1, P2, and P3 are three successive positions of

the planet, then the ratio of the area, swept out in
going from P1 to P2, to the area, swept out in passing
from P2 to P3, is equal to the ratio of the corresponding
elapsed times. (Figure 7.2)

2. The planetary orbits have the form of perfect ellipses,
with the center of the sun as a common focus. 

3. The periodic times of the planets (i.e., the times
required to complete the corresponding orbital
cycles), are related to the major axes of the orbits in
such a way, that the ratio of the squares of the peri-
odic times of any two planets, is equal to the ratio of
the cubes of the corresponding semi-major axes of
the orbits. (The “semi-major axis” is half of the
longest axis of the ellipse, or the distance from the
center of the ellipse to either of the two extremes,
located at the perihelion and aphelion points; for a
circular orbit, this is the same as the radius.) Using
the semi-major axis and periodic time of the Earth as
units, the stated proposition amounts to saying, that
the planet’s periodic time T, and the semi-major axis
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FIGURE 7.1(b) Kepler’s
model defines a “dissonant”
interval, the orbital region
between Mars and Jupiter.
Decisive confirmation of
Kepler’s hypothesis was first
made possible by Gauss’s
determination of the orbit of
the asteroid Ceres. This
region, known today as the
“asteroid belt,” marks the
division between the “inner”
and “outer” planets of the
solar system, and may be the
location of an exploded
planet unable to survive at
this harmonically unstable
position. (Artist’s rendering)

__________

* Lyndon LaRouche has shed light on that relationship, through his
hypothesis on the historical generation of the elements—and, ulti-
mately, of the planets themselves—by “polarized” fusion reactions
within a Keplerian-ordered, magnetohydrodynamic plasmoid, “dri-
ven” by the rotational action of the sun. In that process,
Mendeleyev’s harmonic values for the chemical elements, and the
congruent, harmonic array of orbital corridors of the planets, pre-
date the generation of the elements and planets themselves!

perihelionaphelion



sun

P1P2

P3

asteroid belt

FIGURE 7.2. Kepler’s constraint for motion on an
elliptical orbit. The ratios of elapsed times are
proportional to the ratios of swept-out areas. In equal
time intervals, therefore, the areas of the curvilinear
sectors swept out by the planet, will be equal—even
though the curvilinear distances traversed on the orbit
are constantly changing. In the region about perihelion,
nearest the sun, the planet moves fastest, covering the
greatest orbital distance; whereas, at aphelion, farthest
from the sun, it moves most slowly, covering the least
distance. This constraint is known as Kepler’s “area
law,” later referred to as his “Second Law.”
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A, of the planet are connected by the relation:

T 3 T = A 3 A 3 A.

(So, for example, the semi-major axis of Mars’ orbit is
very nearly 1.523674 times that of the Earth, while the
Mars “year” is 1.88078 Earth years.) (Table I)

In the next chapter, we shall present Gauss’s general-
ized form of these constraints, applied to hyperbolic and
parabolic, as well as to elliptical, orbits.

Unfortunately, in the context of ensuing epistemolog-
ical warfare, Kepler’s constraints were ripped out of the
pages of his works, severing their intimate connection
with the harmonic ordering of the solar system as a
whole, and finally dubbed “Kepler’s Three Laws.” The
resulting “laws,” taken in and of themselves, do not
specify which orbits are possible, nor which actually
occur, might have occurred, or might occur in the future;
nor do they say anything about the character of the planet
or other object occupying a given orbit.

This flaw did not arise from any error in Kepler’s
work per se, but was imposed from the outside. Newton
greatly aggravated the problem, when he “inverted”
Kepler’s constraints, to obtain his “inverse square law” of
gravitation, and above all when he chose—for political
reasons—to make that “inversion” a vehicle for promot-
ing a radical-empiricist, Sarpian conception of a Universe
governed by pair-wise interactions in “empty” space.

However, apart from the distortions introduced by
Newton et al., there does exist a paradoxical relation-
ship—of which Gauss was clearly aware—between the
three constraints, stated above, and Kepler’s harmonic
ordering of the solar system as a whole. While rejecting
the notion of Newtonian pair-wise interactions as ele-
mentary, we could hardly accept the proposition, that the
orbit and motion of any planet, does not reflect the rest of
the solar system in some way, and in particular the exis-
tence and motions of all the other planets, within any
arbitrarily small interval of action. Yet, the three con-
straints make no provision for such a relationship!
Although Kepler’s constraints are approximately correct
within a “corridor” occupied by the orbit, they do not
account for the “fine structure” of the orbit, nor for cer-
tain other characteristics which we know must exist, in
view of the ordering of the solar system as a whole.

A New Physical Principle
Hence the irony of Gauss’s approach, which applies
Kepler’s three constraints as the basis for his mathemati-
cal determination of the orbit of Ceres from three obser-
vations, as a crucial step toward uncovering a new physical

principle which must manifest itself in a discrepancy, howev-
er “infinitesimally small” it might be, between the real
motion, and that projected by those same constraints!

Compare this with the way Wilhelm Weber later
derived his electrodynamic law, and the necessary exis-
tence of a “quantum” discontinuity on the microscopic
scale. Compare this, more generally, with the method of
“modular arithmetic,” elaborated by Gauss as the basis of
his Disquisitiones Arithmeticae. Might we not consider any
given hypothesis or set of physical principles, or the cor-
responding functional “hypersurface,” as a “modulus,”
relative to which we are concerned to define and measure
various species of discrepancy or “remainder” of the real
process, that in turn express the effect of a new physical
principle? Thus, we must discriminate, between arrays of
phenomena which are “similar,” or congruent, in the
sense of relative agreement with an existing set of princi-
ples, and the species of anomaly we are looking for.

The concept of a series of successive “moduli” of
increasing orders, in that sense, derived from a succession
of discoveries of new physical principle, each of which
“brings us closer to the truth by one dimension” (in Gauss’s
words), is essential to Leibniz’s calculus, and is even
implicit in Leibniz’s conception of the decimal system.

With these observations in mind, we can better appre-
ciate some of the developments following Gauss’s suc-
cessful forecast of the orbit of Ceres.

On March 28, 1802, a short time after the rediscovery
of Ceres by several astronomers in December 1801 and
January 1802, precisely confirming Gauss’s forecast,
Gauss’s friend Wilhelm Olbers discovered another small
planet between Mars and Jupiter—the asteroid Pallas.
Gauss immediately calculated the Pallas orbit from
Olber’s observations, and reported back with great excite-
ment, that the two orbits, although lying in quite differ-

Mean distance 
to sun A Time T

Planet (in A.U.*) (in Earth yrs)
_________________________________________________

Mercury 0.387 0.241
Venus 0.723 0.615
Earth 1.000 1.000
Mars 1.524 1.881
Jupiter 5.203 11.862
Saturn 9.534 29.456

* 1 Astronomical Unit (A.U.) = 1 Earth-sun distance

TABLE I. The ratio of the squares of the periodic times of
any two planets, is equal to the ratio of the cubes of the
corresponding mean distances to the sun, which are equal
to the semi-major axes of the orbits.
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ent planes, had nearly exactly the same periodic
times, and appeared to cross each other in space!
Gauss wrote to Olbers:

In a few years, the conclusion [of our analysis of
the orbits of Pallas and Ceres–JT] might either
be, that Pallas and Ceres once occupied the same
point in space, and thus doubtlessly formed parts
of one and the same body; or else that they orbit
the sun undisturbed, and with precisely equal
periods . . . [in either case,] these are phenomena,
which to our knowledge are unique in their type,
and of which no one would have had the slightest
dream, a year and a half ago. To judge by our
human interests, we should probably not wish for
the first alternative. What panic-stricken anxiety,
what conflicts between piety and denial, between
rejection and defense of Divine Providence,
would we not witness, were the possibility to be
supported by fact, that a planet can be annihilat-
ed? What would all those people say, who like to
base their academic doctrines on the unshakable
permanence of the planetary system, when they
see, that they have built on nothing but sand, and
that all things are subject to the blind and arbi-
trary play of the forces of Nature! For my part, I
think we should refrain from such conclusions. I
find it almost wanton arrogance, to take as a
measure of eternal wisdom, the perfection or
imperfection which we, with our limited powers
and in our caterpillar-like stage of existence,
observe or imagine to observe in the material
world around us.

The discovery of Ceres and Pallas, as probably the
largest fragments of what had once been a larger planet,
orbiting between Mars and Jupiter, helped dispose of the
myth of “eternal tranquility” in the heavens. Indeed, we
have good reason to believe, that cataclysmic events have
occurred in the solar system in past, and might occur in
the future. On an astrophysical scale, thanks to progress in
the technology of astronomical observation, we are ever
more frequent witnesses to a variety of large-scale events
unfolding on short time scales. This includes the disap-
pearance of entire stars in supernova explosions. The first
well-documented case of this—the supernova which gave
birth to the famous Crab Nebula—was recorded by Chi-
nese astronomers in the year 1054. But, even within the
boundaries of our solar system, dramatic events are by no
means so exceptional as most people believe.

Apart from the hypothesized event of an explosion of
a planet between Mars and Jupiter, made plausible by
the discovery of the asteroid belt, collisions with comets
and other interplanetary bodies are relatively frequent.

We witnessed one such collision with Jupiter not long
ago. Another example is the collision of the comet
Howard-Koomen-Michels with the surface of the sun,
which occurred around midnight on Aug. 30, 1979. This
spectacular event was photographed by an orbiting solar
observatory of the U.S. Naval Research Laboratory.
(Figure 7.3) The comet’s trajectory (which ended at the
point of impact) was very nearly a perfect, parabolic
Keplerian orbit, whose perihelion unfortunately was
located closer to the center of the sun, than the sun’s own
photosphere surface! A century earlier, the Great Comet
of 1882 was torn apart, as it passed within 500,000 kilo-
meters of the photosphere, emerging as a cluster of five
fragments.

Beyond these sorts of events, that appear more or less
accidental and without great import for the solar system
as a whole, it is quite conceivable, that even the present
arrangement of the planetary orbits might undergo more
or less dramatic and rapid changes, as the system passes
from one Keplerian ordering to another.

—JT

FIGURE 7.3.
Aug. 30, 1979: Comet
Howard-Koomen-
Michels streaks
toward the sun at a
speed of about
640,000 mph, trailed
by a tail of dust and
gas more than three
million miles in
length. A white disk
has been added to the
central area of the
time-lapsed images, to
show the size and
location of the sun
(which is masked by
an opaque disk in the
orbiting camera). The
bright spot in the
upper left corner of
the photographs is the
planet Venus. (Photo:
U.S. Naval Research
Laboratory)



38

CHAPTER 8

Parabolic and Hyperbolic Orbits

We have one last piece of business to dispose of,
before we launch into Gauss’s solution in
Chapter 9. We have to devise a way of extend-

ing Kepler’s constraints to the case of the parabolic and
hyperbolic orbits, inhabited by comets and other peculiar
entities in our solar system.

Comets and Non-Cyclical Orbits
During Kepler’s time, the nature and motion of the
comets was a subject of great debate. From attempts to
measure the “daily parallax” in the apparent positions of
the Great Comet of 1577, as observed at different times of
the day (i.e., from different points of observation, as deter-
mined by the rotation and orbital motion of the Earth),
the Danish astronomer Tycho Brahe had concluded that
the distance from the Earth to the comet must be at least
four times that of the distance between the Earth and
Moon. Tycho’s measurement was viciously attacked by
Galileo, Chiaramonti, and others in Paolo Sarpi’s Venet-
ian circuits. Galileo et al. defended the generally accepted
“exhalation theory” of Aristotle, according to which the
comets were supposed to be phenomena generated inside
the Earth’s atmosphere. Kepler, in turn, refuted Galileo
and Chiaramonti point-by-point in his late work, Hyper-
aspistes, published 1625. But Kepler never arrived at a sat-

isfactory determination of comet trajectories. 
If Johann von Maedler’s classic account is to be

believed, the hypothesis of parabolic orbits for comets
was first put forward by the Italian astronomer Giovanni
Borelli in 1664, and later confirmed by the German pas-
tor Samuel Doerfel, in 1681.

By the time of Gauss, it was definitively established that
parabolic and even hyperbolic orbits were possible in our
solar system, in addition to the elliptical orbits originally
described by Kepler. In the introduction to his Theory of the
Motion of the Heavenly Bodies Moving about the Sun in Conic
Sections, Gauss emphasizes that the discovery of parabolic
and hyperbolic orbits had added an important new dimen-
sion to astronomy. Unlike the periodic, cyclical motion of a
planet in an elliptical orbit, a body moving in a parabolic or
hyperbolic orbit traverses its trajectory only once.* This
poses the problem of constructing the equivalent of
Kepler’s constraints for the case of non-elliptical orbits.
(Figure 8.1) 

The existence of parabolic and hyperbolic orbits, in
fact, highlighted a paradox already implicit in Kepler’s
own derivation of his constraints, and to which Kepler
himself pointed in the New Astronomy.†

In his initial formulation of what became known as
the Second Law, Kepler spoke of the “time spent” at any
given position of the orbit as being proportional to the
“radial line” from the planet to the sun. He posed to
future geometers the problem of how to “add up” the
radial lines generated in the course of the motion, which
seemed “infinite in number.” Later, Kepler replaced the
radial lines with the notion of sectoral areas described
around the sun during the motion of “infinitely small”
intervals of time. He prescribed that the ratios of those
infinitesimal areas to the corresponding elapsed times, be
the same for all parts of the orbit. Since that relationship
is preserved during the entire process, during which such

__________

* A certain percentage of the comets have essentially elliptical orbits
and relatively well-defined periods of recurrence. A famous exam-
ple is Halley’s Comet (which Halley apparently stole from Flam-
steed), with a period of 76 years. Generally, however, the trajecto-
ries even of the recurring comets are unstable; they depend on the
“conjunctural” situation in the solar system, and never exactly
repeat. In the idealized case of a parabolic or hyperbolic orbit, the
object never returns to the solar system. In reality, “parabolic” and
“hyperbolic” comets sometimes return in new orbits.

† SEE extracts from Kepler’s 1609 New Astronomy, pp. 24-25.

FIGURE 8.1. The parabolic path of a comet, crossing the
elliptical orbits of Mercury, Venus, Earth, and Mars.



“infinitesimal” areas accumulate to form a macroscopic
area in the course of continued motion, it will be valid for
any elapsed times whatever.

The result is Kepler’s final formulation of the Second
Law, which very precisely accounts for the manner in
which the rate of angular displacement of a planet
around the sun actually slows down or speeds up in the
course of an orbit. (Figure 8.2)

However, while specifying, in effect, that the ratios of
elapsed times are proportional to the ratios of swept-out
areas, the Second Law says nothing about their absolute
magnitudes. The latter depend on the dimensions of the
orbit as a whole, a relationship manifested in the pro-
gressive, stepwise decrease in the overall periods and
average velocities of the planets, as we move outward
away from the sun, i.e., from Mercury, to Venus, the
Earth, Mars, Jupiter, and so on. (SEE Figure 7.1b) In his
Harmony of the World of 1619, Kepler characterized that
overall relationship by what became known as the Third
Law, demonstrating that the squares of the periodic
times are proportional to the cubes of the semi-major
axes of the orbits or, equivalently: The periodic times are
proportional to the three-halves powers of the semi-
major axes (SEE Table I, page 36).

Thus, the Third Law addresses the integrated result of
an entire periodic motion, while the Second Law address-
es the changes in rate of motion subsumed within that
cycle. The relationship of the two, in terms of Kepler’s
original approach, is that of an integral to a differential.

What happens to the Third Law in the case of a para-
bolic or hyperbolic orbit? In such case, the motion is no
longer periodic, and the axis of the orbit has no assignable
length. The periodic time and semi-major axes have, in a
sense, both become “infinite.” On the other hand, the
motion of comets must somehow be coherent with the
Keplerian motion of the main planets, just as there exists

an overall coherence among all ellipses, parabolas, and
hyperbolas, as subspecies of the family of conic sections.
In fact, the motions of the comets are found to follow
Kepler’s Second Law to a very high degree of precision.
That suggests a very simple consideration: How might
we characterize the relationship between elapsed times
and areas swept out, in terms of absolute values (and not
only ratios), without reference to the length of a complet-
ed period? We can do that quite easily, thanks to Kepler’s
own work, by combining all three of Kepler’s constraints.

Gauss’s Constraints
Kepler’s Second Law defines the ratio of the area swept
out around the sun, to the elapsed time, as an unchang-
ing, characteristic value for any given orbit. For an ellip-
tical orbit, Kepler’s Third Law allows us to determine the
value of that ratio, by considering the special case of a sin-
gle, completed orbital period. The area swept out during
a complete period, is the entire area of the ellipse, which
(as was already known to Greek geometers) is equal to
π 3 A 3 B, where A and B are the semi-major and semi-
minor axes, respectively. The elapsed time is the duration
T of a whole period, known from Kepler’s Third Law to
be equal to A3/2, when the semi-major axis and periodic
time of the Earth’s orbit are taken as units. The quotient
of the two is π 3 A 3 (B/A3 / 2 ), or in other words 
π 3 (B /√

_
A
_
. ). Now, the quotient B/√

_
A
_

has a special sig-
nificance in the geometry of elliptical orbits [SEE Appen-
dix (l)]: Its square, B2/A, is equal to the “half-parameter”
of the ellipse, which is half the width of the ellipse as
measured across the focus in the direction perpendicular
to the major axis. (Figure 8.3a) The importance of the
half-parameter, which is equivalent to the radius in the
case of a circle, lies in the fact that it has a definite mean-
ing not only for circular and elliptical orbits, but also for
parabolic and hyperbolic ones. (Figures 8.3b and c) The
“orbital parameter” and “half-parameter” played an
important role in Gauss’s astronomical theories.

We can summarize the result just obtained as follows:
For elliptical orbits, at least, the value of Kepler’s ratio of
area swept out to elapsed time—a ratio which is constant
for any given orbit—comes out to be

π 3 √
_
H
_

,

where H is the half-parameter of the orbit. Unlike a
periodic time and finite semi-major axis, which exist for
elliptical but not parabolic or hyperbolic orbits, the
“parameter” does exist for all three. Does the corre-
sponding relationship actually hold true, for the actually
observed trajectories of comets? It does, as was verified,
to a high degree of accuracy, by Olbers and earlier
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sun

FIGURE 8.2. Kepler’s “area law.” The ratios of elapsed
times are proportional to the ratios of swept-out areas.



astronomers prior to Gauss’s work.
The purpose of this exercise was to provide a replace-

ment for Kepler’s Third Law, which applies to parabolic
and hyperbolic orbits, as well as to elliptical ones. We
have succeeded. The constant of proportionality, connect-
ing the ratio of area and time on the one side, and the
square root of the “parameter” on the other, came to be
known as “Gauss’s constant.” Taking the orbit of Earth
as a unit, the constant is equal to π.

With one slight, additional modification, whose details
need not concern us here,* the following is the general-
ized form of Kepler’s constraints, which Gauss sets forth
at the outset of his Theory of the Motion of the Heavenly
Bodies Moving about the Sun in Conic Sections.

Gauss emphasizes that they constitute “the basis for all
the investigations in this work”:

(i) The motion of any given celestial body always
occurs in a constant plane, upon which lies, at the same
time, the center of the sun.

(ii) The curve described by the moving body is a con-
ic section whose focus lies at the center of the sun.

(iii) The motion in that curve occurs in such a way,
that the sectoral areas, described around the sun during
various time intervals, are proportional to those time
intervals. Thus, if one expresses the times and areas by
numbers, the area of any sector, when divided by the
time during which that sector was generated, yields an
unchanging quotient.

(iv) For the various bodies orbiting around the sun,
the corresponding quotients are proportional to the
square roots of the half-parameters of the orbits.

—JT

40

__________

* In his formulation in the Theory of the Motion, Gauss includes a
factor correcting for a slight effect connected with the “mass
ratio” of the planet to the sun. That effect, manifested in a
slight increase in Kepler’s ratio of area to elapsed time, becomes
distinctly noticeable only for the larger planets, especially
Jupiter, Saturn, and Uranus.  The “mass,” entering here, does 

not imply Newton’s idea of some self-evident quality inhering
in an isolated body. Rather, “mass” should be considered as a
complex physical effect, measurable in terms of slight discrep-
ancies in the orbits, i.e., as an additional dimension of curvature
involving the relationship of the orbit, as singularity, to the
entire solar system.
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(b)

FIGURE 8.3. “Orbital
parameter” for different
conic sections. (a) Ellipse.
(b) Parabola. (c) Hyperbola.
Using the orbital parameter
as a measure, we can apply
Kepler’s Third Law to
parabolic and hyperbolic
orbits, even though these are
unbounded.

(a)

(c)
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CHAPTER 9

Gauss’s Order of Battle

Now, let us join Gauss, as he thinks over the prob-
lem of how to calculate the orbit of Ceres. Gauss
had at his disposal about twenty observations,

made by Piazzi during the period from Jan. 1 to Feb. 11,
1801. The data from each observation consisted of the
specification of a moment in time, precise to a fraction of
a second, together with two angles defining the precise
direction in which the object was seen at that moment,
relative to an astronomical system of reference defined by
the celestial sphere, or “sphere of the fixed stars.” Piazzi
gave those angles in degrees, minutes, seconds, and tenths
of seconds of arc.

In principle, each observation defined a line through
space, starting from the location of Piazzi’s telescope in
space at the moment of the observation—the latter deter-
minable in terms of the Earth’s known rotation and
motion around the sun—and directed along the direction
defined by Piazzi’s pair of angles. Naturally, Gauss had to
make corrections for various effects such as the preces-
sion of the Earth’s axis, aberration and refraction in the
Earth’s atmosphere, and take account of possible margins
of error in Piazzi’s observations.

Although the technical execution of Gauss’s solution is
rather involved, and required a hundred or more hours
of calculation, even for a master of analysis and numeri-
cal computation such as Gauss, the basic method and
principles of the solution are in principle quite elemen-
tary. Gauss’s tactic was, first, to determine a relatively
rough approximation to the unknown orbit, and then to
progressively refine it, up to a high degree of precision.

Gauss’s procedure was based on using only three obser-
vations, selected from Piazzi’s data. Gauss’s original choice
consisted of the observations from Jan. 2, Jan. 22, and Feb.
11. (Figure 1.1) Later, Gauss made a second, definitive
round of calculations, based on using the observations of
Jan. 1 and Jan. 21, instead of Jan. 2 and Jan. 22.

Overall, Piazzi’s observations showed an apparent
retrograde motion from the time of the first observation
on Jan. 1, to Jan. 11, around which time Ceres reversed to
a forward motion. Most remarkable, was the size of the
angle separating Ceres’ apparent direction from the plane
of the ecliptic—an angle which grew from about 15º on
Jan. 1, to over 18º at the time of Piazzi’s last observation.
That wide angle of separation from the ecliptic, together
with the circumstance, that all the major planets were

known to move in planes much closer to the ecliptic,
prompted Piazzi’s early suspicion that the object might
turn out to be a comet.

Gauss’s first goal, and the most challenging one, was to
determine the distance of Ceres from the Earth, for at least
one of the three observations. In fact, Gauss chose the sec-
ond of the unknown distances—the one corresponding to
the intermediate of the three selected observations—as
the prime target of his efforts. Finding that distance
essentially “breaks the back” of the problem. Having
accomplished that, Gauss would be in a position to suc-
cessively “mop up” the rest.

In fact, Gauss used his calculation of that value to
determine the distances for the first and third observa-
tions; from that, in turn, he determined the correspond-
ing spatial positions of Ceres, and from the two spatial
conditions and the corresponding time, he calculated a
first approximation of the orbital elements. Using the
coherence provided by that approximate orbital calcula-
tion, he could revise the initial calculation of the dis-
tances, and obtain a second, more precise orbit, and so on,
until all values in the calculation became coherent with
each other and the three selected observations.

The discussion in Chapter 2 should have afforded the
reader some appreciation of the enormous ambiguity
contained in Piazzi’s observations, when taken at face
value. Piazzi saw only a faint point of light, only a “line
of sight” direction, and nothing in any of the observations
per se, permitted any conclusion whatsoever about how
far away the object might be. It is only by analyzing the
intervals defined by all three observations taken together,
on the basis of the underlying, Keplerian curvature of the
solar system, that Gauss was able to reconstruct the reali-
ty behind what Piazzi had seen.

Polyphonic Cross-Voices
Gauss’s opening attack is a masterful application of the
kinds of synthetic-geometrical methods, pioneered by
Gérard Desargues et al., which had formed the basis of
the revolutionary accomplishments of the Ecole Poly-
technique under Gaspard Monge.

Firstly, of course, we must have confidence in the
powers of Reason, that the Universe is composed in such
a way, that the problem can be solved. Secondly, we must



consider everything that might be relevant to the prob-
lem. We are not permitted to arbitrarily “simplify” the
problem. We cannot say, “I refuse to consider this, I
refuse to consider that.”

To begin with, it is necessary to muster not only the rel-
evant data, but above all the complex of interrelationships—
potential polyphonic cross-voices!—underlying the three
observations in relation to each other and (chiefly) the sun,
the positions and known orbital motion of the Earth, the
unknown motion of Ceres, and the “background” of the
rest of the solar system and the stars.

Accordingly, denote the times of the three observa-
tions by t1, t2, t3, the corresponding (unknown!) true spa-
tial positions of Ceres by P1, P2, P3, and the corresponding
positions of the Earth (or more precisely, of Piazzi’s
observatory) at each of the three moments of observation,
by E1, E2, E3. Denote the position of the center of the sun
by O. (Figure 9.1) We must consider the following rela-
tionships in particular:

(i) The three “lines of sight” corresponding to Piazzi’s
observations. These are the lines passing from E1 through
P1, from E2 through P2, and from E3 through P3. As
already noted, the observations tell us only the directions
of those lines and, from knowledge of the Earth’s motion,
their points of origin, E1, E2 and E3; but not the distances
E1P1, E2 P2 and E3 P3.

(ii) The elapsed times between the observations, taken
pairwise, i.e., t2−t1, t3−t2, and t3−t1, as well as the ratios or
intervals of those elapsed times, for example t3−t2 : t2−t1,
t2−t1 : t3−t1, t3−t2 : t3−t1, and the various permutations and
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L2
L1

E1

E3

E2

O

P1P2

P3

inversions of these.
(iii) The orbital sectors for the Earth and Ceres, corre-

sponding to the elapsed times just enumerated, in rela-
tion to one another and the elapsed times.

(iv) The triangles formed by the positions of the
Earth, Ceres and the sun, in particular the triangles
OE1E2, OE2E3, OE1E3, and triangles OP1P2, OP2P3,
OP1P3, representing relationships among the three posi-
tions of the Earth and of Ceres, respectively; plus the
three triangles formed by the positions of the sun, the
Earth and Ceres at each of the three times, taken togeth-
er: OE1P1, OE2 P2, OE3 P3. Also, each of the line segments
forming the sides of those triangles. (Figure 9.2)

Each line segment must be considered, not as a noun
but as a verb, a geometrical interval. For example, the
segment E1P1 implies a potential action of displacement
from E1 to P1. Displacement E1P1 is therefore not the
same as P1E1.

(v) The relationships (including relationships of area)
between the triangles OE1E2, OE2 E3, OE1E3, as well as
OP1P2, OP2P3, OP1P3 and the corresponding orbital sec-
tors, as well as the elapsed times, in view of the
Kepler/Gauss constraints.

Gauss’s immediate goal, is to determine the second of
those distances, the distance from E2 to P2. Call that criti-
cal unknown, “D.” (Figure 9.3)

Although we shall not require it explicitly here, for his
detailed calculations, Gauss, in a typical fashion, intro-

E1

E2

E3

P3

P2
P1

O

FIGURE 9.2. Triangular relationships among Earth, Ceres,
and the sun.

FIGURE 9.1. Positions of the sun (O), Earth (E), and Ceres
(P), at the three times of observation. P1 ,P2 ,P3 must lie on
lines of sight L1 ,L2 ,L 3 , but their distances from Earth are
not known.
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duces a spherical projection into the construction, trans-
ferring the directions of all the various lines in the prob-
lem for reference to a single center. (Figure 9.4) There-
by, Gauss generates a new set of relationships, as indicat-
ed in Figure 9.4.

E1

E2

E3

P3

P2
P1

D

O

FIGURE 9.4. Gauss’s spherical mapping. The
directions of the lines L1, L2, L3 are transferred
to an imaginary sphere S, by drawing unit
segments l1, l2, l3, parallel to L1, L2, L3,
respectively, from the center c. In addition
(although not shown here, for the sake of
simplicity), Gauss transferred all the other
directions in the problem—i.e., the directions of
the lines OE1, OE2, OE3, and OP1, OP2,
OP3 —to the “reference sphere,” thus obtaining
a summary of all the angular relationships.
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P3

P2
P1

O
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l2 l3
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Faced with this bristling array of relationships,
some readers might already be inclined to call off the
war, before it has even started. Don’t be a coward!
Don’t be squeamish! Nothing much has happened yet.
However bewildering this complex of spatial relation-
ships might appear at first sight, remember: everything
is bounded by the curvature of what Jacob Steiner
called “the organism of space.” All relationships are
generated by one and the same Gaussian-Keplerian
principle of change, as embodied in the combination of
motions of the Earth and Ceres, in particular. The
apparent complexity just conceals the fact that we are
seeing one and the same “One,” reflected and repeated
in many predicates.

As for the construction, it is all in our heads. Seen
from the standpoint of Desargues, the straight lines are
nothing but artifacts subsumed under the “polyphonic”
relationships of the angles formed by the various direc-
tions, seen as “monads,” located at the sun, Earth, and
Ceres.

Somewhere within these relationships, the desired dis-
tance “D” is lurking. How shall we smoke it out? Might
the answer not lie in looking for the footprints of a differ-
ential of curvature between the Earth’s motion and the
(unknown) motion of Ceres?

We shall discover Gauss’s wonderfully simple solution
in the following chapter.

—JT

FIGURE 9.3. Gauss’s immediate goal: determine distance D
from E2 to P2 .



Gauss is a mathematician of fanatical determination, he
does not yield even a hand’s width of terrain. He has fought
well and bravely, and taken the battlefield completely. 

—Comment by Georg Friedrich 
von Tempelhoff, 1799. 

Prussian General and Chief of Artillery,
Tempelhoff was also known for his work in

mathematics and military history. The youthful
Gauss, who regarded him as one of the best

German mathematicians, had sent him a pre-
publication copy of his Disquisitiones 

Arithmeticae.

Although Gauss knew analytical calculation perhaps better
than any other living person, he was sharply opposed to any
mechanical use of it, and sought to reduce its use to a
minimum, as far as circumstances allowed. He often told
us, that he never took a pencil into his hand to calculate,
before the problem had been completely solved by him in
his head; the calculation appeared to him merely as a
means by which to carry out his work to its conclusion. In
discussions about these things, he once remarked, that many
of the most famous mathematicians, including very often
Euler, and even sometimes Lagrange, trusted too much to
calculation alone, and could not at all times account for
what they were doing in their investigations. Whereas he,
Gauss, could affirm, that at every step he always had the
goal and purpose of his operations precisely in mind, and
never strayed from the path. 

—Walther Sartorius von Waltershausen,
godson of Goethe and a student and close friend

of Gauss, in a biographical sketch written soon
after Gauss’s death in December 1855.

In the last chapter, we mustered the key elements
which must be taken into account to determine the
Earth-Ceres distances and, eventually, the orbit of

Ceres, from a selection of three observations, each giving
a time and the angular coordinates of the apparent posi-
tion of Ceres in the heavens at the corresponding
instants.

Our suggested approach is to “read” the space-time
intervals among the three chosen observations, as implic-
itly expressing a relationship between the curvatures of
the orbits of Earth and Ceres. Then, compare the
adduced differential, with the “projected” appearance, to
derive the distances and the positions of the object.

To carry out this idea, Gauss first focusses on the man-

ner in which the second (“middle”) position of each plan-
et is related to its first and third (i.e., “outer”) positions. In
other words: How is P2 related to P1 and P3? And, what
is the distinction of the relation of P2 to P1 and P3, in
comparison with that of E2 to E1 and E3?(Figure 10.1)

Thanks to our knowledge of the overall curvature of
the solar system, embodied in part in the Gauss-Kepler
constraints, we can say something about those questions,
even before knowing the details of Ceres’ orbit.

To wit: Regard P2 and E2 as singularities resulting
from division of the total action of the solar system, which
carries Ceres from P1 to P3, and simultaneously carries
the Earth from E1 to E3, during the time interval from t1
to t3. In both cases, the Gauss-Kepler constraints tell us,
that the sectoral areas swept out by the two motions, are
proportional to the elapsed times. The latter, in turn, are
known to us, from Piazzi’s observations.

Explore this matter further, as follows. Concentrating
first on Ceres, write, as a shorthand:

S12 = area of orbital sector swept out by Ceres 
from P1 to P2 ,

S23 = area of orbital sector from P2 to P3 ,
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CHAPTER 10

Closing In on Our Target

E1

E2

E3

P3

P2
P1

O

S12
S23

FIGURE 10.1. Sectoral areas S12 and S23 , swept out as Ceres
moves, respectively, from P1 to P2 , and from P2 to P3 .



S13 = area of orbital sector from P1 to P3 .

According to the Gauss-Kepler constraints, the ratios

S12 : t2−t1, S23 : t3−t2, and S13 : t3−t1,

which are equivalent to the fractional expressions more
easily used in computation

S12 S23 S13_____ , _____, and _____ ,
t2−t1 t3−t2 t3−t1

all have the same identical value, namely, the product of
Gauss’s constant (in our context equal to π) and the square
root of Ceres’ orbital parameter. (SEE Chapter 8) The analo-
gous relationships obtain for the Earth. Now, we don’t
know the value of Ceres’ orbital parameter, of course; nev-
ertheless, the above-mentioned proportionalities are enough
to determine key “cross”-ratios of the areas and times
among themselves, without reference to the orbital parame-
ter. For example, the just-mentioned circumstance that 

S12 : elapsed time t2−t1 : : S23 : elapsed time t3−t2

(the “ : : ” symbol means an equivalence between two ratios),
has as a consequence, that the ratio of those areas must be
equal to the ratio of the elapsed times, or in other words:

S12 t2−t1_____ = ______ ,
S23 t3−t2

and similarly for the various permutations of orbital posi-
tions 1, 2, and 3.

Now, we can compute the elapsed times, and their
ratios, from the data supplied by Piazzi, for the observa-
tions chosen by Gauss. The specific values are not essen-
tial to the general method, of course, but for concreteness,
let’s introduce them now. In terms of “mean solar time,”
the times given by Piazzi for the three chosen observa-
tions, were as follows:

t1 = 8 hours 39 minutes and 4.6 seconds p.m. on 
Jan. 2, 1801.

t2 = 7 hours 20 minutes and 21.7 seconds p.m. on
Jan. 22, 1801.

t3 = 6 hours 11 minutes and 58.2 seconds p.m. on
Feb. 11, 1801.

The circumstance, that t2 is nearly half-way between t1
and t3, yields a certain advantage in Gauss’s calculations,
and is one of the reasons for his choice of observations.
Calculated from the above, the elapsed times are: 

t2−t1 = 454.68808 hours, 

t3−t2 = 478.86014 hours, and 

t3−t1 (the sum of the first two) = 933.54842 hours. 

Calculating the various ratios, and taking into
account what we just observed concerning the implica-
tions of the Gauss-Kepler constraints, we get the follow-
ing conclusion:

S12 t2−t1_____ = _____ = 0.94952 ,
S23 t3−t2

S12 t2−t1_____ = _____ = 0.48705 ,
S13 t3−t1

S23 t3−t2_____ = _____ = 0.51295 .
S13 t3−t1

Everything we have said so far, including the numeri-
cal values just derived, applies just as well to the Earth, as
to Ceres. We merely have to substitute the areas swept
out by the Earth in the corresponding times. Of course, in
the case of the Earth, we know its positions and orbital
motion quite precisely; here, the ratios of the sectoral
areas tell us nothing essentially new. For Ceres, whose
orbit is unknown to us, our application of the “area law”
has placed us in a paradoxical situation: Without, for the
moment, having any way to calculate the orbit and the
areas of the orbital sectors themselves, we now have pre-
cise values for the ratios of those areas!

How could we use those ratios, to derive the orbit of
Ceres? Not in any linear way, obviously, because the
same values apply to the Earth and any planet moving
according to the Gauss-Kepler constraints. The key,
here, is not to think in terms of “getting to the answer”
by some “straight-line” procedure. Rather, we have to
think of progressing in dimensionalities, just as in a battle
we strive to increase the freedom of action of our own
forces, while progressively reducing that of the enemy
forces. So, at each stage of our determination of the
Ceres orbit, we try to increase what we know by one or
more dimensions, while reducing the indeterminacy of
what we must know, but don’t yet know, to a corre-
sponding extent. We don’t have to worry about how the
orbital values will finally be calculated, in the end. It is
enough to know, that by proceeding in the indicated
way, the values will eventually be “pinned down” as a
matter of course.

So, our acquiring the values for the ratios of the sec-
toral areas generated by Ceres’ motion, does not in itself
lead to the desired orbital determination; but, in the
context of the whole complex of relationships, we have
closed in on our target by at least one “dimensionality.”

Accordingly, return once more to the relationship
of the intermediate position of Ceres (P2), to the out-
side positions (P1 and P3). Introduce a new tactic, as
follows.
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The Harmonic Ordering of 
Action in Space
Among most elementary characteristics of the “organism
of space,” is the manner in which the result of a series of
displacements, is related to the individual displacements
making up that series. This concerns us very much in
the case in point. For example, the apparent position of
Ceres, as seen from the Earth at any given moment, cor-
responds to the direction, in space, of the line segment
from the Earth to Ceres. The latter, seen as a geometrical
interval or displacement, can be represented as a differ-
ential between two other spatial intervals or displace-
ments, namely the interval from the sun to the Earth,
“subtracted,” in a sense, from the interval from the sun
to Ceres. Or, to put it another way: the displacement

from the sun to Ceres, can be broken down as the resul-
tant or sum of the displacement from the sun to the
Earth, following by the displacement from the Earth to
Ceres. Similarly, we have to take account of successive
displacements corresponding to the motions P1 to P2, P2
to P3, E1 to E2, E2 to E3, etc.

Now, this apparently self-evident mode of combining
displacements, involves an implicit assumption, which
Gauss was well aware of. If I have two displacements
from a common locus, say from the O (i.e., the center of
the sun) to a location A, and from the O to location B,
then I might envisage the combination or addition of the
displacements in either of the following two ways (Fig-
ure 10.2): I might apply the first displacement, to go
from O to A, and then go from A to a third location, C,
by displacing parallel to the second displacement from

FIGURE 10.2. The famous
“parallelogram law” for
combination of displacements
OA and OB, assumes that the
result of the combination
does not depend on the order
in which the displacements
are carried out—i.e., that C
and D coincide. Gauss
considered that this might
only be approximately true,
and that the parallelogram
law might break down when
the displacements are very
large.
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FIGURE 10.3.
Derivation of the
location of P2 by
parallel displace-
ments along
directions OP1 and
OP3 .



the O to B, and by the same distance. The displacement
from A to C is parallel and congruent to that from O to
B, and can be considered as equivalent to the latter in
that sense. Or, I might operate the displacements in the
opposite order; moving first from O to B, and then moving
parallel and congruent with OA, from B to a point D.
The obvious assumption here is, that the two procedures
produce the same end result, or in other words, that C
and D will be the same location. In that case, the dis-
placements OA, AC, OB, BC will form a parallelogram
whose opposing pairs of sides are congruent and parallel
line segments. 

Could it happen, that C and D might actually turn
out to be different, in reality? Gauss himself sought to
define large-scale experiments using beams of light,
which might produce an anomaly of a similar sort.
Gauss was convinced, that Euclidean geometry is noth-
ing but a useful approximation, and that the actual char-
acteristics of visual space, are derived from a higher,
“anti-Euclidean” curvature of space-time. Such an “anti-
Euclidean” geometry, is already implied by the Kepler-
ian harmonic ordering of the solar system, and would be
demonstrated, again, by Wilhelm Weber’s work on elec-
tromagnetic singularities in the microscopic domain, as
well as the work of Fresnel on the nonlinear behavior of
light “in the small.” Hence, once more, the irony of
Gauss’s applying elementary constructions of Euclidean
geometry, to the orbital determination of Ceres. Gauss’s
use of such constructions, is informed by the primacy of
the “anti-Euclidean” geometry, in which his mind is
already operating.

Turning to the relationship of P2 to P1 and P3, the
question naturally arises: Is it possible to describe the

location P2, as the combined result of a pair of displace-
ments, along the directions of OP1 and OP3, respectively?
(Figure 10.3) The possibility of such a representation, is
already implicit in the fact, emphasized by Gauss in his
reformulation of Kepler’s constraints, that the orbit of
any planet lies in a  plane passing through the center of
the sun. A plane, on the other hand, is a simplified rep-
resentation of a “doubly extended manifold,” where all
characteristic modes of displacement are reducible to
two principles or “dimensionalities.” On the elementary
geometrical level, this means, that out of any three dis-
placements, such as OP1, OP2, and OP3, one must be
reducible to a combination of the other two, or at least of
displacements along the directions defined by the other
two. In fact, it is easy to construct such a decomposition,
as follows.

Start with only the two displacements OP1 and OP3.
Combine the two displacements, in the manner indicated
above, to generate a point C, as the fourth vertex of a par-
allelogram consisting of OP1, OP3, P1C, and P3C. (Figure
10.3b) Now, apart from extreme cases (which we need
not consider for the moment), the position P2 will lie
inside the parallelogram. We need only “project” P2 onto
each of the “axes” OP1, OP3 by lines parallel with the oth-
er axis. (Figure 10.3c) In other words, draw a parallel to
OP1 through P2, intersecting the segment OP3 at a point
Q3, and intersecting the parallel segment P1C at a point F.
Draw a parallel to OP3 through P2, intersecting the seg-
ment OP1 at a point Q1 and the parallel segment P3C at a
point E. The result of this construction, is to create sever-
al sub-parallelograms, including one with sides OQ1,
Q1P2, OQ3, Q3P2, and having P2 as a vertex. (Figure
10.3d)
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Examining this result, we see that the displacement
OP2, which corresponds to the diagonal of the above
mentioned sub-parallelogram, is equivalent, by con-
struction, to the combination or sum of the displace-
ments OQ1 and OQ3, the latter lying along the axes
defined by P1 and P3. We have thus expressed the posi-
tion of P2 in terms of P1, P3, and the two other division
points Q1 and Q3.

This suggests a new question: Given, that all these
constructions are hypothetical in character, since the posi-
tions of P1, P2, and P3 are yet unknown to us, do Piazzi’s
observations together with the Gauss-Kepler constraints,
allow us to draw any conclusions of interest, concerning
the location of the points Q1 and Q3, or at least the shape
and proportions of the sub-parallelogram OQ1P2Q3, in
relation to the parallelogram OP1CP3?

Aha! Why not have a look at the relationships of areas
involved here, which must be related in some way to the
areas swept out during the orbital motions. First, note
that the line Q1E, which was constructed as the parallel to
OP3 through P2, divides the area of the whole parallelo-
gram OP1CP3 according to a specific proportion, namely

that defined by the ratio of the segment OQ1, to the larger
segment OP1. (Figure 10.3e) Similarly, the line Q3F
divides the area of the whole parallelogram according to
the proportion of OQ3 to OP3. (Figure 10.3f) Or, con-
versely: the ratios OQ1 : OP1 and OQ3 : OP3 are the same,
respectively, as the ratios of the areas of the sub-parallelo-
grams OQ1EP3 and OQ3FP1, to the whole parallelogram
OP1CP3.

What are those areas? Examining the triangles gener-
ated by our division of the parallelogram, and by the seg-
ments P1P2, P2P3, and P1P3, observe the following: The
triangle OP1P3 makes up exactly half the area of the
whole parallelogram OP1CP3. (Figure 10.3g) The trian-
gle OP1P2 makes up half the area of the sub-parallelo-
gram OQ3FP1 (Figure 10.3h), and the triangle OP2P3
makes up exactly half the area of the parallelogram
OQ1EP3. (Figure 10.3i) Consequently, the ratios of the
parallelogram areas, which in turn are the ratios by
which Q3 and Q1 divide the segments OP3 and OP1,
respectively, are nothing other than the ratios of the trian-
gular areas OP1P2 and OP2P3, respectively, to the triangu-
lar area OP1P3. As a shorthand, denote those areas by T12,
T23, and T13, respectively. (Figure 10.4)

This brings us to a critical juncture in Gauss’s
whole solution: How are the areas of the triangles, just
mentioned, related to the corresponding sectors, swept
out by the motion of Ceres, and whose ratios are
known to us? 

Comparing T12 with S12, for example, we see that the
difference lies only in the relatively small area, enclosed
between the orbital arc from P1 to P2, and the line seg-
ment connecting P1 and P2. The magnitude of that area,
is an effect of the curvature of the orbital arc. Now, if we
knew what that was, we could calculate the ratios of the
triangular areas from the known ratios of the sectors; and
from that, we would be in possession of the ratios defin-
ing the division of OP1 and OP3 by the points Q1 and Q3.
Those ratios, in turn, express the spatial relationship
between the intermediate position P2 and the outer posi-
tions P1 and P3. As we shall see in Chapter 11, that would
bring us very close to being able to calculate the distance
of Ceres from the Earth, by comparing such an adduced
spatial relationship, to the observed positions as seen from
the Earth.

Fine and good. But, what do we know about the cur-
vature of the orbital arc from P1 to P3? Was it not exactly
the problem we wanted to solve, to determine what
Ceres’ orbit is? Or, do we know something more about
the curvature, even without knowing the details of the
orbit?

—JT

FIGURE 10.4. Orbital sectors S12 ,S23 ,S13 , and their
corresponding triangular areas T12 ,T23 ,T13 .
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We are nearing the punctum saliens of Gauss’s
solution. The constructions in this and the fol-
lowing chapters are completely elementary,

but highly polyphonic in character.
Let us briefly review where we stand, and add some

new ideas in the process.
Recall the nature of the problem: We have three obser-

vations by Piazzi, reporting the apparent position of Ceres
in the sky, as seen from the Earth, at three specified
moments of time, approximately twenty days apart. The
first task set by Gauss, is to determine the distance of Ceres
from the Earth for at least one of those observations.

Two “awesome” difficulties seemed to stand in our
way:

First, the observations of the motion of Ceres, were
made from a point which is not fixed in space, but is also
moving. The position and apparent motion of Ceres, as
seen from the Earth, is the result of not just one, but sev-
eral simultaneous processes, including Ceres’ actual
orbital motion, but also the orbital motion and daily rota-
tion of the Earth. In addition, Gauss had to “correct” the
observations, by taking account of the precession of the
equinoxes (the slow shift of the Earth’s rotational axis),
optical aberration and refraction, etc.

Secondly, there is nothing in the observations of Ceres
per se, which gives us any direct hint, about how distant

the object might be from the Earth. Each observation
defines nothing more than a “line-of-sight,” a direction in
which the object was seen. We can represent this situa-
tion as follows (Figure 11.1): From each of three points,
E1, E2, E3, representing the positions of the Earth (or
more precisely, of Piazzi’s observatory) at the three times
of observation, draw “infinite” lines L1, L2, L3, each in

CHAPTER 11

Approaching the Punctum Saliens
FIGURE 11.1. Points P1 ,P2 ,P3 must lie on lines of sight
L1 ,L2 ,L3 . But where?

E1

E3

E2

O

L1L2
L3

P1P2

P3

Q1

Q3

T13

P3

P1
P2

P3

P1

T12
T23

O O O

BOX I. The position of P2 is
related to that of P1 and P3, by a
parallelogram, formed from
displacements OQ1 and OQ3,
along the axes OP1 and OP3,
respectively.

Points Q1 and Q3 divide the
segments OP1 and OP3 according
to proportions which can be
expressed in terms of the
triangular areas T12, T23, and T13.
In fact, from the discussion in
Chapter 10, we know that

OQ1 T23______ = _____ , and
OP1 T13

OQ3 T12______ = _____ .
OP3 T13
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the direction in which Ceres was seen at the correspond-
ing time. Concerning the actual positions in space of
Ceres (positions we have designated P1, P2, P3), the obser-
vations tell us only, that P1 is located somewhere along
L1, P2 is somewhere on L2, and P3 is somewhere on L3.
For an empiricist, the distances along those lines remain
completely indeterminate.

We, however, know more. If Ceres belongs to the
solar system, its motion must be governed by the har-
monic ordering of that system, as expressed (in part) by
the Gauss-Kepler constraints. Those constraints reflect
the curvature of the space-time, within which the events
recorded by Piazzi occurred, and relative to which we
must “read” his observations.

According to Gauss’s first constraint, the orbit of Ceres
is confined to some plane passing through the center of the
sun. This simple proposition, should already transform
our “reading” of the observations. The three positions P1,
P2, P3, rather than simply lying “somewhere” along the
respective lines, are the points of intersections of the three
lines L1, L2, L3 with a certain plane passing through the
sun. (Figure 11.2a) We don’t yet know which plane this
is; but, the very occurrence of an intersection of that form,
already greatly reduces the degree of indeterminacy of the
problem, and introduces a relationship between the three
(as yet unknown) positions and distances.

Indeed, imagine a variable plane, which can pivot
around the center of the sun; for each position of that
plane, we have three points of intersection, with the lines
L1, L2, L3. Consider, how the configuration of those three

points, relative to each other and the sun, changes as a
function of the variable “tilt” of the plane. (Figure 11.2b)
Can we specify something characteristic about the geo-
metrical relationship among the three actual positions P1,
P2, P3 of Ceres, which might distinguish that specific
group of points a priori from all other “triples” of points,
generated as intersections of the three given lines with an
arbitrary plane through the center of the sun?

Thanks to the work of the last chapter, we already
have part of the answer. (Box I) We found, that the sec-
ond position of Ceres, P2, is related to the first and third
positions P1 and P3, by the existence of a parallelogram,
whose vertices are O, P2, and two points Q1 and Q3, lying
on the axes OP1 and OP3 respectively. Furthermore, we
discovered that the positions Q1 and Q3, defining those
two displacements, can be precisely characterized in
terms of ratios of the triangular areas spanned by the
positions P1, P2, P3 (and O). 

Henceforth, we shall sometimes refer to the values of
those ratios, T23 : T13 and T12 : T13 (or, T23 /T13 and
T12 /T13), as “coefficients,” determining the interrelation
of the three positions in question.

We already observed in the last chapter, that the trian-
gular areas entering into these relationships, are nearly
the same as the orbital sectors swept out by the planet in
moving between the corresponding positions; and, whose
ratios are known to us, thanks to Kepler’s “area law,” as
ratios of elapsed times. In fact, we calculated them in the
last chapter from Piazzi’s data.

The area of each orbital sector, however, exceeds that of
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FIGURE 11.2. (a) P1 ,P2 ,P3 , which are positions on Ceres’ orbit, must all lie in some plane passing through the sun. (b) Each
hypothetical position of the orbital plane defines a different configuration of positions P1 ,P2 ,P3 relative to each other.
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the corresponding triangle, by the lune-shaped area, en-
closed between the orbital arc and the straight-line segment
connecting the corresponding two positions of the planet.

As long as the three positions of the planet are relative-
ly close together—as they are in the case of Ceres at the
times of Piazzi’s observations—the lune-shaped excesses
amount to only a small fraction of the areas of the trian-
gles (or sectors). In that case, the ratios of the triangles 
T23 : T13 and T12 : T13 would be “very nearly” equal to the
ratios of the corresponding orbital sectors, S23 : S13 and 
S12 : S13, whose values we calculated in the preceding
chapter.

Can we regard the small difference between the trian-
gle and sector ratios, as an “acceptable margin of error”
for the purposes of a first approximation? If so, then we
could take the numerical values calculated in Chapter 10
from the ratios of the elapsed times, and say:

T23 S23____ = (approximately) ____ = 0.513 ,
T13 S13

T12 S12____ = (approximately) ____ = 0.487 .
T23 S23

Let us suppose, for the moment, that these equations
were exactly correct, or very nearly so. What would they tell
us, about the configuration of the three points P1, P2, P3?

To get a sense of this, readers should perform the fol-
lowing graphical experiment: Choose a fixed point O, to
represent the center of the sun, and choose any two other
points as hypothetical positions for P1 and P3. Next,
determine the corresponding positions of Q1 and Q3 on
the segments OP1 and OP3, so that OQ1 is 0.513 times the
total length of OP1, and OQ3 is 0.487 times the total
length of OP3. Combine the displacements OQ1 and OQ3
according to the “parallelogram law,” to determine a
position for P2. Now, change the positions of P1 and P3,
and see how P2 changes. What remains constant in the
relationship between P2, P1, and P3? Also, examine the
effect, of replacing the “coefficients” just used, by some
other pair of values, say 0.6 and 0.9.

Evidently, by specifying the values of the ratios in terms
of which the position of P2 is determined by those of P1
and P3, we have greatly restricted the range of “possible”
triples of points, which could qualify as the three actual
positions for Ceres.

Recall the image of a manifold of “triples” of points,
generated as the intersections of a variable plane, passing
through the center of the sun, with the three “lines of
sight” L1, L2, L3. (SEE Figure 11.2) How many of those
triples manifest the specific type of relationship of the sec-
ond upon the first and third, defined by those specific val-
ues for the coefficients? Exploring this question by draw-
ings and examples, we soon gain the conviction, that—

apart from very exceptional cases in terms of the lines L1,
L2, L3, and the specified values of the coefficients—the
specified type of configuration is realized for only one
position of the movable plane. Thus, the positions of the
three points in question, are practically uniquely deter-
mined, once L1, L2, L3 and the “coefficients” are given.

If that is the case, then the task we have set ourselves
must, intrinsically, be capable of solution! In particular,
there must be a way to determine the Earth-Ceres dis-
tances from nothing more than the directions of the lines
L1, L2, L3 (as given by Piazzi’s observations), the positions
of the Earth, and sufficiently accurate values for the coef-
ficients defined above.

To see how this might be accomplished, reflect on the
implications of the parallelogram expressing the interre-
lationship between the second, and the first and third
positions of Ceres. (SEE Box I) That parallelogram
expresses the circumstance, that the (as yet unknown)
position of P2, results from a combination of the two dis-
placements OQ1 and OQ3. Concerning the positions of Q1
and Q3, we know that they lie on the segments OP1 and
OP3, respectively, and divide those segments according to
proportions (“coefficients”) whose values are known to
us, at least in approximation. (Figure 11.3) Unfortunate-
ly, since we don’t know P1 and P3, we have no way to
directly determine the positions of Q1 and Q3 in space.

Let us look into the situation more carefully. Consider,
first, the displacement OQ1 in relation to the positions of
the sun, Earth, and Ceres at the first moment of observa-
tion. Those positions form a triangle, whose sides are
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FIGURE 11.3. Closing in on P2 . The proportional rela-
tionships of Q1 ,Q3 to OP1 ,OP3 are known approximately
from the ratios of elapsed times.
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OE1, OP1 and E1P1. (Figure 11.4a) Point Q1 lies on one of
those sides, namely OP1, dividing it according to the pro-
portion defined by the first coefficient. However, we can’t
say anything about the lengths of OP1 and E1P1, nor
about the angle between them, so the position of Q1
remains undetermined for the moment.

But what about the points, which correspond to Q1 on
the other sides of the triangle? Draw the parallel to the
line-of-sight E1P1, through Q1 down to OE1. That parallel
intersects the axis OE1 at a location, which we shall call F1.
That point F1 will divide the segment OE1 by the same
proportion, that Q1 divides OP1 (for, by construction,

BOX II. The position of P2 results from the combination of
the displacements OQ1 and OQ3 . On the other hand, by our
constructions, 

OQ1 = OF1 + F1Q1, and OQ3 = OF3 + F3Q3.

Combine displacements OF1 and OF3, to get a position F,
and then perform the other two displacements, F1Q1 and

F3Q3. This amounts to constructing a parallelogram based at
F whose sides are parallel to, and congruent with, the
segments F1Q1 and F3Q3. The directions of the latter
segments are parallel to Piazzi’s “lines of sight” from E1 to
P1 and E3 to P3, respectively. The end result must be P2. This
tells us that P2 lies in the plane through F, determined by
those two “line of sight” directions.
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FIGURE 11.4. Closing in
on P2 . Determining 
(a) F1 and the direction
of F1Q1 , and (b) F3 and
the direction of F3Q3 .
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OF1Q1 and OE1P1 are similar triangles). That proportion,
as we noted, is at least approximately known. Since the
position of the Earth, E1, is known, we can determine the
position of F1 directly, by dividing the known segment OE1
according to that same proportion.

This result brings us, by implication, a dimension clos-
er to our goal! Observe, that—by construction—the seg-
ment F1Q1 is parallel to, and congruent with, a sub-seg-
ment of the line-of-sight E1P1. Call that sub-segment
E1G1. In other words, to arrive at the location of Q1 from
O, we can first go from O to the position F1, just con-
structed, and then carry out a second displacement,
equivalent to the displacement E1G1 but applied to F1
instead of E1. We don’t know the magnitude of that dis-
placement, but we do know its direction, which is that of
the line of sight L1 given by Piazzi’s first observation.

Now, apply the very same considerations, to the posi-
tions for the third moment of observation (i.e., the trian-
gle OE3P3). (Figure 11.4b) Dividing the segment OE3
according to the value of the second coefficient, deter-
mine the position of a point F3 on the line OE3, such that
the line F3Q3 is parallel with the line-of-sight E3 P3. The
displacement OQ3 is thus equivalent to the combination
of OF3, and a displacement in the direction defined by the
line of sight E3P3, i.e., L3.

We are now inches away from being able to determine
the position of P2! Recall, that we resolved the displace-
ment OP2 into the combination of OQ1 and OQ3. Each of
the latter two displacements, on the other hand, has now

been decomposed, into a known displacement (OF1 and
OF3, respectively), and a displacement along one of the
directions determined by Piazzi’s observations. In other
words, OP2 is the result of four displacements, of which
two are known in direction and length, and the other two
are known only as to direction. (Box II)

Assuming, as we did from the outset, that the result of
a series of displacements of this type, does not sensibly depend
on the order in which they are combined, we can imagine
carrying out the four displacements, yielding the position
of P2 relative to O, in the following way: First, combine
the displacements OF1 and OF3. The result is a point F,
located in the plane of the ecliptic. We can determine the
position of F directly from the known positions F1 and
F3. Then, apply the two remaining displacements, to get
from F to P2.

What does that say, about the nature of the relation-
ship of P2 to F? We don’t know the magnitudes of the
displacements carrying us from F to P2, but we know
their two directions. They are the directions defined by
Piazzi’s original lines of sight, L1 and L3. Aha! Those two
directions, as projected from F, define a specific plane
through F. We have only to draw parallels L1′, L3′
through F, to the just-mentioned lines of sight; the plane
in question, plane Q, is the plane upon which L1′ and L3′
lie. (Figure 11.5) Since that plane contains both of the
directions of the two displacements in question, their
combined result, starting from F—i.e., P2—will in any
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FIGURE 11.5. P2 must lie on plane Q constructed at point F.
But where?
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FIGURE 11.6. Locating P2 . Line L2 , originating at E2 ,
must intersect plane Q at point P2 . E2 P2 is the crucial
distance we are seeking.
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case be some point in that plane.
So, P2 lies on that plane. But where? Don’t forget the

second of the selected observations of Piazzi! That obser-
vation defines a line L2, extended from E2, along which
P2 is located. Where is it located? Evidently, at the point of
intersection of L2 with the plane which we just constructed!
(Figure 11.6) The distance along L2, between E2 and
that point of intersection (i.e., the distance E2 P2), is the
crucial distance we are seeking. Eureka!

This—with one, very crucial addition by Gauss—
defines the kernel of a method, by which we can actually
calculate the Earth-Ceres distance. It is only necessary to
translate the geometrical construct, just sketched, into a

form which is amenable to precise computations.
However, the pathway of solution we have found so

far, has one remaining flaw. We shall discover that, and
Gauss’s ingenious remedy, in Chapter 12.

In the meantime, readers should ponder the following:
The possibility of determining the position of P2, as the
intersection of the line L2 with a certain plane through F,
presupposes, that F does not coincide with the origin of
that line, namely E2. In fact, the size of the gap between F
and E2, reflects the difference in curvature between the
orbits of Earth and Ceres, over the interval from the first
to the third observations.

—JT

CHAPTER 12

An Unexpected Difficulty Leads to
New Discoveries

In Chapter 11, we appeared to have won a major bat-
tle in our efforts to determine the orbit of Ceres from
three observations. The war, however, has not yet

been won. As we soon shall see, the greatest challenge
still lies before us.

We developed a geometrical construction that gives us

an approximation for the second position of Ceres. That
construction consisted of the following essential steps:

1. The three chosen observations define the directions of
three “lines-of-sight” from Piazzi’s observatory
through the positions of Ceres, at each of the given
times of observation. Using that information, and the
known orbit and rotational motion of the Earth, deter-
mine the positions of the observer, E1, E2, E3, and con-
struct lines L1, L2, L3, running from each of those posi-
tions in the corresponding directions.* (Figure 12.1)

2. From the times provided for Piazzi’s observations,
compute the ratios of the elapsed times, between the
first and second, the second and third, and the first and
third times—i.e., the ratios t2−t1: t3−t1 and t3−t2: t3−t1.

3. According to Kepler’s “area law,” the values, just com-
puted, coincide with the ratios of the sectoral areas,
S12 : S13 and S23 : S13, swept out by Ceres over the corre-
sponding time intervals. We assumed, that for the pur-

_________
* For reference, Piazzi gave the apparent positions for Jan. 2, Jan. 22,

and Feb. 11, 1801, as follows:

right ascension declination
Jan. 2 51º 47′ 49″ 15º 41′ 5″
Jan. 22 51º 42′ 21″ 17º 3′ 18″
Feb. 11 54º 10′ 23″ 18º 47′ 59″

Those “positions” are nothing but the directions in which the lines
L1, L2, L3 are “pointing.”

E1

E2

E3

P3

P2
P1

O

L1L2

L3

FIGURE 12.1. Relationships of the positions of the sun (O),
Earth (E1 ,E2 ,E3 ), lines of sight, and Ceres (P1 ,P2 ,P3 ).



OE3, according to the ratios defined by the
approximate values for the coefficients c and d. In
other words, construct points F1 and F3, along the
segments OE1 and OE3, respectively, in such a way, that
OF1/OE1 = t3−t2 / t3−t1 and OF3 /OE3 = t2−t1 / t3−t1.
Then, construct F as the endpoint of the resultant of
the two displacements OF1 and OF3. (Thus, F will be
the fourth vertex of the parallelogram constructed
from points O, F1, and F3.) (Figure 12.3)

6. Next, draw lines L1′, L3′ parallel to the lines L1 and L3,
through F. The resulting lines determine a unique
plane, Q, passing through F.

7. Determine the point P, where the line L2 intersects the
plane Q. In other words, “project” from the second
position E2 of the Earth, along the “line of sight”
defined by the second observation, until you hit the
plane Q. (Figure 12.4) That point, P, is our first
approximation for the Ceres position P2!
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pose of approximation, it would be possible to ignore the
relatively small discrepancy between the ratios of the or-
bital sectors on the one hand, and those of the correspond-
ing triangular areas formed by the sun and the corre-
sponding positions of Ceres, on the other. (Figure 12.2)

4. On that basis, we assumed that the ratios of the elapsed
times, computed in step 2, provide “sufficiently pre-
cise”approximations to the values for the ratios of the
triangular areas,  T12 : T13 and T23 : T13. The true values
of those ratios, which I shall refer to as “d” and “c,”
respectively, are the coefficients which define the spa-
tial relationship of the second position of Ceres to the
first and third positions, in terms of the “parallelogram
law” for the combination and decomposition of simple
displacements in space.

5. Using the approximate values for c and d adduced
from the elapsed times in the manner just described,
construct a position F, in the plane of the Earth’s orbit,
in such a way, that F’s relationship to the Earth positions
E1 and E3 , is the same as that adduced to exist between the
second, and first and third positions of Ceres.

To spell this out just once more: Divide the lengths
of the segments from the sun to the Earth, OE1 and

P3

P2 P1

O

P3

P2 P1

O

P3

P2 P1

S23

S12

S13

T23

T12  

T13

O

O

P3

P2 P1

O

E2
E1

E3 F3

F1
F

L3

L2

E3

E2

L1

F

P2 !

E1

plane Q

L3′
L1′

FIGURE 12.2. Orbital sectors S12 ,S23 ,S13 and corresponding
triangular areas T12 ,T23 ,T13 .

FIGURE 12.4. The intersection of line L2 with plane Q,
determines point P2 .

FIGURE 12.3. Determining point F, as a combination of
displacements along OE1 and OE3 .



56

Using routine methods of analytical and descriptive
geometry, as developed by Fermat and perfected by Gas-
pard Monge et al., we can translate the geometrical con-
struction, sketched above, into a procedure for numerical
computation of the distance E2P, from the data provided
by Piazzi.

We would be well advised, however, to think twice
before launching into laborious calculation. As it stands,
our method is based on a crude approximation for esti-
mating the values of the crucial coefficients, c and d.
Remember, we chose to ignore the differences between
the orbital sectors and the corresponding triangles. We
might argue for the admissibility of that step, for the pur-
poses of approximation, as follows.

Firstly, we are concerned only with the ratios, and
not the absolute magnitudes of the sectors and triangles.
Secondly, the differences in question—namely the lune-
shaped areas contained between the orbital arcs and the
straight-line chords connecting the corresponding
orbital positions—are certainly only a tiny fraction of
the total areas of the orbital sectors. Hence, they will
have only a “marginal” effect on the values of the ratios
of those areas.

In fact, simple calculations, carried out for the hypo-
thetical assumption of a circular orbit between Mars and
Jupiter,* indicate, that we can expect an error on the
order of about one-fourth of one percent in the determina-
tion of the coefficients c and d, when we disregard the

difference between the sectors and the triangles. Not bad,
eh?

Before celebrating victory, however, let us look at the
possible effect of that magnitude of error in the coeffi-
cients, for the rest of the construction.

Look at the problem more closely. An error of x per-
cent in the values of c and d, will produce a correspond-
ing percentual error in the positions of F1 and F2, and at
most twice that error, in the process of combining OF1
and OF3 to create F. Any error in the position of F, how-
ever, produces a corresponding shift in the position of
the plane Q, whose intersection with L2 defines our
approximation to the position of Ceres. Now, the direc-
tions of the lines L1, L2, L3, which arose from observa-
tions made over a relatively short time, differ only by a
few degrees. Since the orientation of the plane Q is
determined by parallels to L1 and L3 at F, this means
that L2 will make an extremely “flat” angle to the plane
Q. A slight shift in the position of the plane, yields a
much larger change in the location of its intersection with
L2. How much larger? If we analyze the relative config-
uration of L2, Q, and the ecliptic, corresponding to the
situation in Piazzi’s observations, then it turns out that
any error in the position of F, can generate an error ten
to twenty times larger in the location of the intersection-
point. (Figure 12.5) That would bring us into the range
of a worrisome 5-10 percent error in our estimate for the
Earth-Ceres distance E2 P2.

__________

* To get a sense, how large that supposedly “marginal” error might
be, let us work out a hypothetical case. Suppose that the unknown
planet were moving in a circular orbit, about halfway between
Mars and Jupiter; say, at a distance of 3 Astronomical Units
(A.U.) from the sun (three times the mean Earth-sun distance).
According to Kepler’s constraints, the square of the periodic time
(in years) of any closed orbit in the solar system, is equal to the
cube of the major axis of the orbit (in A.U.). The periodic time for
the unknown planet, in this case, would be the square root of
33333, or about 5.196152 (years). In a period of 20 days (i.e.,
approximately the time between the successive observations
selected by Gauss), the planet would traverse a certain fraction of
a total revolution around the sun, equivalent to 20 divided by the
number of days in the orbital period of 5.196152 years, i.e.,
20/(365.256364 3 5.196152), or 0.010538. To find the area of the
orbital sector swept out during 19 days, we have only to form the
product of 0.010538 and the area enclosed by a total revolution—
the latter being equal to π (,3.141593) times the square of the
orbital radius (333). We get a result of 0.297951, in units of
square A.U.

Next, compute the triangular area between the sun and two
positions of the planet, 20 days apart. The angle swept out at the
sun by that motion, is 0.010538 3 360º, or 3.79368º. The height and
base of the corresponding isosceles triangle, whose longer sides are
equal to the orbital radius, can be estimated by graphical means, or
computed with the help of sines and cosines. The triangle is found 

to have a height of 2.998356 A.U. and a base (the chord between
the two planetary positions) of 0.198600 A.U., for an area of
0.297737 square A.U.

Comparing the values just obtained, we find the excess area of
the orbital sector over the triangle, to be a “mere” 0.000214 square
A.U. (Given that an astronomical unit is 150 million kilometers,
that “tiny” area corresponds to “only” about 5 trillion square kilo-
meters!) More to the point, the ratio of the sector to the triangular
area is 1.000718. Thus, in replacing the triangular areas T12 and
T23 by the corresponding sector areas S12 and S23, in the ratios
which define the coefficients c and d, we introduce an error of
about 0.07 percent.

Note, however, that these estimates only apply to an elapsed
time of the order of 20 days—such as between the first and sec-
ond, and the second and third positions. The first and third posi-
tions, on the other hand, are about 40 days apart; calculating this
case through, we find an orbital sector area of 0.595902 and a tri-
angular area of 0.594170 square A.U. In this case, the difference is
0.00193 square A.U.—almost eight times what it was in the earlier
case!—and the ratio is 1.0029, corresponding to a proportional
error of more than 0.29 percent. This is the error to be expected,
when we use S13 instead of T13 in the ratios defining the coeffi-
cients c and d.

From these exploratory computations, we conclude that by far
the largest source of error, in our estimate of the coefficients c and
d, is due to the discrepancy between S13 and T13.
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As a matter of fact, our calculation with circular orbits
greatly underestimates the error in the coefficients c and d,
which would occur in the case of a significantly non-circu-
lar orbit (as is the case for Ceres). In that case, the error
can amount to 2 percent or more, leading to a final error
of 20-30 percent in our estimate of the object’s distance.

Such a huge margin of error would render any predic-
tion of the position of Ceres completely useless.

Back to Curvature
Reality has rejected the crudeness of our approach, in try-
ing to ignore the discrepancies between the orbital sectors
and the corresponding triangles. Those discrepancies are,
in fact, the most crucial characteristics of the orbit itself

“in the small”; they result from the curvature of the orbit,
as reflected in the elementary fact, that the path of the
planet between any two points, no matter how close
together, is always “curving away from” a straight line.*

To come to grips with the problem, no less than three
levels of the process must be taken into account:

(i) The curvature “in the infinitely small,” which acts
in any arbitrarily small interval, and continuously
“shapes” the orbit at every moment of an ongoing process
of generation. 

(ii) The curvature of the orbit “in the large,” consid-
ered as a “completed” totality “in the future,” and which
ironically pre-exists the orbital motion itself; this, of course
as defined in the context of the solar system as a whole. 

(iii) The geometrical intervals among discrete loci P1,
P2, etc., of the orbit, as moments or events in the process,
and whose relationships embody a kind of tension
between the apparent cumulative or integrated effect of
curvature “in the small,” and the curvature “in the
large”—acting, as it were, from the future.

Euler, Newton, and Laplace rejected this, linearizing
both in the small and in the large. From the standpoint of
Newton and Laplace, the orbit as a whole—history!—has
no efficient existence. An orbit is only the accidental trace
of a process which proceeds “blindly” from moment to
moment under the impulse of momentary “forces”—like
the “crisis management” policies of recent years! For the
Newtonian, only “force”, which you can “feel” in the
“here and now,” has the quality of reality. But Newtonian
“blind force” is a purely linear construct, devoid of cogni-
tive content. You can travel the entropic pathway of deriv-
ing the “force law” algebraically from Kepler’s Laws; but,
in spite of elaborate efforts of Laplace et al., it is axiomati-
cally impossible to derive the Keplerian ordering of the
solar system as a whole, from Newton’s physics.

In fact, the efforts of Burkhardt and others, to deter-
mine the orbit of Ceres using the elaborate mathematical
apparatus set forth by Laplace in his famous Méchanique
Céleste, proved a total failure. According to the report of
Gauss’s friend, von Zach, the elderly Laplace, who—
from the lofty heights of Olympus, as it were—had been
following the discussions and debates concerning Ceres,
concluded that it was impossible to determine the orbit

L2

F

P2

plane Q′
plane Q

F′

P2′

FIGURE 12.5. Owing to the extremely flat angle which the
line L 2 makes to the plane Q, a slight shift in the position of
F (from F to F′ ) causes a much larger change in the point
of intersection with L2 (from P2 to P2′ ).

__________

* Industrious readers, who took the trouble to actually plot the posi-
tion of F, using the ratios of elapsed times as described above, will
have discovered, that F lies on the straight line between E1 and E3.
One might also note the following:

(i) As long as we use the ratios of elapsed times as our coeffi-
cients, the sum of those coefficients will invariably be equal to 1.

(ii) If we have any two points A and B, divide the segments OA 

and OB according to coefficients whose sum is equal to 1, and gen-
erate the corresponding displacements along those two axes. The
point resulting from the combination of those displacements, will
always lie along the straight line joining A and B.

(iii) Consequently, insofar as P2 does not lie on the segment P1P3,
in virtue of the curvature of Ceres’ orbit, the sum of the true values
of c and d, will always be different from, and, in fact, greater than 1.
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from Piazzi’s limited data. Laplace recommended calling
off the whole effort, waiting until some astronomer, by
luck, might succeed in finding the planet again. When
von Zach reported the results of Gauss’s orbital calcula-
tion, and the extraordinary agreement between Gauss’s
proposed orbit and the entire array of Piazzi’s observa-
tions, this was pooh-poohed by Laplace and his friends.
But reality soon proved Gauss right.

Characteristic of the axiomatic superiority of Gauss’s
method, as of Kepler before him, is that Gauss treats the
orbits as efficient entities. Accordingly, let us investigate
the relationships among P1, P2, P3, which necessarily
ensue from the fact that they are subsumed as moments
of a unique Keplerian orbit.

A Geometric Metaphor
For this purpose, construct the following representation
of the manifold of all potential orbits (seen as “complet-
ed” totalities), having a common focus at the center of
the sun, and lying in any given plane. (Figure 12.6)
Represent that plane as a horizontal plane, passing
through a point O, representing the center of the sun.
Above the plane, generate a circular cone, whose vertex
is at O, and whose axis is the perpendicular to the plane
through O.

Cutting the cone by another, variable plane, we gener-
ate the entire array of conic sections. The perpendicular

projection of each such conic section, down onto the hori-
zontal plane, will also be a conic section; and the resulting
conic sections in the horizontal plane will all have the
point O as a common focus.* (SEE “The Ellipse as a Coni-
cal Projection,” in the Appendix)

This construction can be “read” as a geometrical
metaphor, juxtaposing two different “spaces” that are
axiomatically incompatible. In this metaphor, the cone rep-
resents the invisible space of the process of creation (which
Lyndon LaRouche sometimes calls the “continuous mani-
fold”), while the horizontal plane represents the space of
visible phenomena. The projected conic section is the visi-
ble, “projected” image of a singularity in the higher space.

Using this construction, examine the relationship
among P1, P2, P3, and the unique orbit upon which P1, P2,
P3 lie. We can determine that orbit by “inverse projec-
tion,” as follows. (Figure 12.7)

At each of P1, P2, P3, draw a perpendicular to the hori-
zontal plane. Those three perpendiculars intersect the
cone at corresponding points, U1, U2, U3. The latter
points, in turn, determine a unique plane, cutting the
cone through those points and generating a conic section
containing them. The projection of that conic section
onto the “visible” horizontal plane, will be the unique
orbit upon which P1, P2, P3 lie. Note, that the heights
h1, h2, h3 of the points U1, U2, U3 above the horizontal
plane are proportional to the radial distances of P1, P2, P3
from the origin O.

Note an additional singularity, generated in the
process: The plane through U1, U2, U3 intersects the axis
of the cone at a certain point, V. The height of that point
on the axis above O, is, in fact, closely related to the

__________

* I first presented the basic idea of this construction in an unpub-
lished April 1983 paper entitled “Development of Conical Func-
tions as a Language for Relativistic Physics.”

FIGURE 12.6. Construct a circular
cone with apex at point O, the
position of the sun in a horizontal
plane. By cutting the cone with a
second plane, we generate an
ellipse. When projected down onto
the horizontal plane, this ellipse
will generate a corresponding,
second ellipse. We shall use this
construction to investigate the
relationships of the orbital sectors
and triangular areas formed by the
observed positions of Ceres.

O



“parameter” of the orbit, which played a key role in
Gauss’s formulation of Kepler’s constraints. Gauss
showed, that the area swept out by a planet in its motion
in a given orbit over any interval of time, is proportional
(by a universal constant of the solar system) to the dura-
tion of the time interval, multiplied by the square root of
the “orbital parameter.” Integrating this with the conical
representation that we have just introduced, opens up a
new pathway toward the solution of our problem.

In fact, if we cut the cone horizontally at the height of
V, then the intersection of that horizontal with the plane
of U1, U2, U3, will be a line l, perpendicular to the main
axis of the conic section. That line l intersects the conic
section in two points, which lie symmetrically on opposite
sides of V and at the same height. The segment l′ of l
(bounded by those points) defines the cross-width of the
conic section at V. Line segment l′ is also a diameter of
the cone’s circular cross-section at V, which in turn is pro-
portional to the height h of V on the axis. Now, project
down to the horizontal plane of P1, P2, P3. The image of
l′, equivalent to l′ in length, is the perpendicular diameter
of the orbit at the focus O, exactly the length that Gauss
called the “parameter” of the orbit.

All of this can be seen, nearly at a glance, from the dia-
gram in Figure 12.6. The immediate upshot is, that
Gauss’s “orbital parameter,” which governs the relation-
ship between the elapsed time and the area swept out by
the motion of a planet in its orbit, is proportional to the
h of the point V on the axis of the cone.

On the other hand, our method of “inverse projection”
allows us to determine V directly in terms of the three
positions P1, P2, P3, by constructing the plane through the
corresponding points U1, U2, U3. As a “spin-off” of these
considerations, we obtain a simple way to determine
Gauss’s orbital parameter for any orbit, from nothing
more than the positions of any three points on the orbit.
We can say even more, however.

We found, earlier, a way to express the spatial rela-
tionship between P1, P2, P3 (relative to O), in terms of
the ratios of the triangular areas T12, T23, T13. This
points to the existence of a simple functional relationship
between those triangular areas, and the value of the
orbital parameter (or, equivalently, the height of V ).
The latter, in turn, is functionally related to the values
of corresponding times and orbital sectors, by Gauss’s
constraint. (Figure 12.8)

Our conical construction has provided a missing link,
in the necessary coherence of the orbital sectors with the
corresponding triangles. This, in turn, will allow us to
supersede the crude approximation, used so far, and to
determine the Ceres distance with a precision which
Laplace and his followers considered to be impossible.

The details will be worked out in the following chap-
ter. But, it is already clear, that we have advanced by
another, critical dimension, closer to victory. The key to
our success, was a sortie into the “continuous manifold”
underlying the planetary orbits.

—JT
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FIGURE 12.7. Use our construction to relate positions
P1 ,P2 ,P3 , radial distances r1 ,r2 ,r3 , heights h and h1 ,h2 ,h3 ,
and the orbital parameter.
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FIGURE 12.8. What is the relationship between the
triangular areas T12 , T23 , T13 and height h of the point V?
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In the previous chapter, we shifted our attention from
the visible form of Ceres’ orbit, to its generation in a
higher domain. With the help of a simple geometri-

cal metaphor, we represented the higher domain by a cir-
cular cone with its axis in the vertical direction, and the
lower, “visible domain” by a horizontal plane. We made
the plane intersect the cone at its vertex, at the location
corresponding to the center of the sun, and likened the
relationship of visible events to events in the higher, “con-
ical space,” to a projection from the cone, parallel to the
conical axis, down to the plane.

In fact, if we trace Ceres’ orbit on the horizontal plane,
that form is the projected image of a conic section on the
cone. 

How is it possible to use the geometry of visual space,
to “map” relationships in a “higher space” of an axiomati-
cally different character? Only as paradox. Obviously, no
“literal” representation is possible, nor do we have a mere
analogy in mind. When we represent visual space by a
two-dimensional plane (inside visual space!), and the high-
er space as a cone in “three dimensions,” projected onto
the plane, we do not mean to suggest that the higher
space is only “higher” by virtue of its having “more
dimensions.” Rather, we should “read” the axis of the
cone in our representation, to signify a different type of
ordering principle than that of visual space—one
embodying features of the transfinite, “anti-entropic”
ordering of the Universe as a whole.

Reflecting on the irony of applying constructions of
elementary geometry to such a metaphorical mapping,
the following idea suggests itself: The geometry of visible
space has shown itself appropriate to a process of discovery
of the reality lying outside visual space, when it is consid-
ered not as something fixed and static, but as constantly
redefined and developed by our cognitive activity, just as
we develop the well-tempered system of music through
Classical thorough-composition. Should we not treat ele-
mentary geometry from the standpoint, that visual space
is created and “shaped” to the purpose of providing reason
with a pathway toward grasping the “invisible geometry”
of Creation itself?

Keeping these ironies in mind, let us return to the
challenge which last chapter’s discussion placed in front
of us. We developed a method for constructing an
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CHAPTER 13

Grasping the Invisible Geometry 
Of Creation

approximation of Ceres’ position, which did not ade-
quately take into account the space-time curvature in the
small. As a result, we introduced a source of error which
could lead to major discrepancies between our estimate
of the Earth-Ceres distance, and the real distance. If
Gauss had not corrected that fault, his attempt at fore-
casting the orbit of Ceres, would have been a failure.

We have no alternative, but to investigate the curva-
ture in the small which characterizes the spatial relation-
ship between any three positions P1, P2, P3 of a planet,
solely by virtue of the fact that they are “moments” of one
and the same Keplerian orbit. And, to do that without
any assumption concerning the particular form of the
conic-section orbit.

We projected the three given positions up to the cone,
to obtain points U1, U2, U3. The latter three points deter-
mine a unique plane, which intersects the cone in a conic
section, and whose projection onto the horizontal plane is
the visible form of Ceres’ orbit. The intersection of that
same plane with the axis of the cone, at a point we called
V, is an important singularity. The circular cross-section
of the cone at the “height” of V, is cut by the U1U2U3

FIGURE 13.1. The orbital parameter is the projection of
diameter l ′ in the circular cross-section of the cone at height
h of V. Diameter l ′ is generated by the intersection of the
circular and elliptical cross-sections.
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plane at two points, which are the endpoints of a diame-
ter l′ through V. That diameter projects (without change
of length) to the segment which represents the width of
the Ceres’ orbit, measured perpendicularly to the axis of
the orbit at its focus O. That length is what Gauss calls
the “orbital parameter.” (Figure 13.1)

Thus, Gauss’s parameter is equal to the cross-section
diameter of the cone at V, which, in turn, is proportional to
the height of V on the conical axis. The factor of propor-
tionality depends upon the apex angle of the cone; that fac-
tor becomes equal to 1, if we choose the apex angle of the
cone to be 90° (so that the surface of the cone makes an
angle of 45° with the horizontal plane at O). Let us choose
the apex angle so. In that case, the height h of V above the
axis is equal to half the orbital parameter. (Figure 13.2)

Now recall, that according to Gauss’s recasting of
Kepler’s constraints, the area swept out by the planet in
any time interval, is proportional to the elapsed time,
multiplied by the square root of the half-parameter. (SEE

Chapter 8) Our analysis actually showed, that the con-
stant of proportionality is π , when the elapsed time is
measured in years, length in Astronomical Units (A.U.)
(Earth-sun distance), and area in square A.U.

From these considerations, we can now express the
areas of the orbital sectors of Ceres, in terms of the elapsed
times and the height h of V on the cone. For example:

S12 = √
_
h 3 π 3 (t2−t1) , and

S23 = √
_
h 3 π 3 (t3−t2) .

At the close of the last chapter, we remarked that the

O

V

45°

orbital parameter

h

b a

FIGURE 13.2. Relationship of height h to the orbital
parameter. The diagram represents the cross-sectional “cut”
of the cone, by the plane defined by the vertical axis and the
segment l′ (represented here as the segment between points a
and b). Since the apex angle of the cone is 90°, the triangles
aVO and bVO are isosceles right triangles. Consequently, 
h = aV = bV = (1/2) 3 (length of ab) = half-parameter of
orbit.
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value of h must somehow be expressible in terms of the
triangular areas T12, T23, T13; and, that the resulting link
with S12 and S23, via h, would finally provide us with a
much more “fine-tuned” approximation to the crucial
ratios T12 : T13 and T23 : T13 than was possible on the basis
of our initial, crude approach. (Figure 13.3)

Not to lose your conceptual bearings at this point,
before we launch into a crucial battle, remember the fol-
lowing: The significance of the orbital parameter, now
represented by h, lies in the fact that it embodies the rela-
tionship between

(i) the Keplerian orbit as a whole;
(ii) the array of “geometrical intervals” between any

three positions P1, P2, P3 on the orbit; and
(iii) the curvature of each arbitrarily small “moment

of action” in the planet’s motion, as expressed in the cor-
responding orbital sector, and above all in the relation-
ship between the “curved” sectoral area and correspond-
ing triangular area.

Gauss focussed his attention on the sector and triangle
formed between the first and the third positions, S13 and
T13. Our experimental calculations, reviewed in the last
chapter, indicated that the discrepancy between these
two, is the main source of error in our method for calcu-
lating the Earth-Ceres distance. Hence, Gauss looked for
a way to accurately estimate that area.

Gauss noted that most of the excess of S13 over T13, i.e.,
the lune-shaped area between the orbital arc from P1 to
P3 and the segment P1P3, is constituted by the triangular

FIGURE 13.3. Our conical projection, which contains both the
triangular areas and the elliptical sectors as well as the orbital
parameter h, will help us to devise a “fine-tuned”
approximation to the crucial coefficients required to
determine the orbit of Ceres (cf.  Figure 13.1).



area P1P2 P3. Denote this triangle—the triangle formed
between all three positions of the planet—by “T123.”
Gauss also observed, that T123 is the excess of T12 and T23
combined, minus T13. (Figure 13.4)

How will our exploration of conical geometry help us
to get a grip on that little “differential” T123? We voiced
the expectation, earlier, that “the height h of V on the
cone must somehow be expressible in terms of the trian-
gular areas T12, T23, T13.” The time has come, to make
good on our promise.

An Elementary Proposition of 
Descriptive Geometry
Those brought up in the geometrical culture of Fermat,
Desargues, Monge, Carnot, and Poncelet would experi-
ence no difficulty whatever at this point. But, most of us
today, emerged from our education as geometrical illiter-
ates.* With a bit of courage, however, this condition can
be remedied.

Recall how we used the triangular areas T12, T13, and
T23 to measure the relationship between the Ceres position
P2 and P1 , P3, as a combination of displacements along the
axes OP1 and OP3. Evidently, we touched upon a principle
of geometry relevant to a much broader domain.

The nature of the relationship we are looking for now,
becomes most clearly apparent, if we put Piazzi’s observa-
tions aside for the moment, and examine, instead, the
hypothetical case, where the P1, P2, P3 are widely separat-
ed—say, at roughly equal angles (i.e., roughly 120° apart)
around O. (Figure 13.5) In this case, we have a triangle
P1P2P3 in the horizontal plane, which contains the point O
and is divided up by the radial lines OP1, OP2, OP3 into the
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smaller triangles T12, T23, and T31. Above the triangle
P1P2P3, and projecting exactly onto it, we have the triangle
U1U2U3. This latter triangle “sits on stilts,” as it were, over
the former. The “stilts” are the vertical line segments P1U1,
P2U2, and P3U3, whose heights are h1, h2, and h3. Point V is
the place where the axis of the cone passes through triangle
U1U2U3. How does  the height of V above the horizontal
plane, depend on the heights h1, h2, and h3?

This is an easy problem for anyone cultured in syn-
thetic geometry, rather than the stutifying, Cartesian
form of textbook “analytical geometry” commonly
taught in schools and universities. The approach called
for here, is exactly the opposite of “Cartesian coordi-
nates.” Don’t treat the array of positions, and the organi-
zation of space in general, as a dead, static entity. Think,
instead, in physical terms; think in terms of change, dis-
placement, work. For example: What would happen to
the height of V, if we were to change the height of one of
the points U1, U2, U3?

Suppose, for example, we keep U2 and U3 fixed, while
raising the height of U1 by an arbitrary amount “d,” rais-
ing it in the vertical direction to a new position U1′. (Fig-
ure 13.6) The new triangle U1′U2U3 intersects the axis of
the cone at a point V′, higher than V. Our immediate task
is to characterize the functional relationship between the
parallel vertical segments VV′ and U1U1′.

The two triangles U1U2U3 and U1′U2U3 share the
common side U2U3, forming a wedge-like figure. Cut
that figure by a vertical plane passing through the seg-
ments VV′ and U1U1′. The intersection includes the seg-
ment U1U1′, and the lines through U1 and V, and

FIGURE 13.4. Most of the excess of S13 over T13 , which is
the lune-shaped area, is constituted by triangle T123 .
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* Including the present author, incidentally.

FIGURE 13.5. How does the height h of V depend upon
heights h1 ,h2 ,h3 , which are in turn a function of the
position of the plane through U1 ,U2 ,U3 ?



through U1′ and V′, respectively, which meet each other
at some point M on the segment U2U3. Two triangles are
formed in the vertical plane from those vertices:
U1MU1′, and a sub-triangle VMV′. Given that VV′ is
parallel to U1U1′, those two triangles will be similar to
each other.

The ratio of similarity of these triangles, determines
the relationship of immediate interest to us, namely, that
between the change in height of V (i.e., the length of VV′ )
and the change in the height of U1 (i.e., the length of
U1U1′ ).

To determine the ratio of similarity of the triangles,
we need only establish the proportionality between any
pair of corresponding sides. So, look at the ratio
MV : MU1, i.e., the ratio by which V divides the segment
MU1. That ratio is not changed when we project the seg-
ment onto the plane of P1, P2, P3. Under the projection,
U1 projects to P1, V projects to O, and M projects to some
point N on the line P2P3.

Our problem is reduced to determining the ratio by
which O divides the line segment NP1—that latter being
the projected image of the segment MU1. Very simple!
Look at P2P3 as the base of the triangle P1P2P3. (Figure
13.7) Draw the line parallel to P2P3 through P1. The dis-
tance separating that line and P2P3 is called the altitude of
the triangle P1P2P3, whose product with the length of the
base, P2P3, is equal to twice the area of the triangle T123.
Next, draw the parallel to P2P3 through the point O. The
gap between that line and P2P3, is the altitude of the tri-
angle OP2P3, whose product with the length of the base
P2P3 is equal to twice the area of triangle T23.

Thus, the ratio of the distances between the first and
second, and the first and third—that is, of the distances
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between P2P3 and each of the two lines parallel to it—is
equivalent to the ratio of T23 to T123. But, the ratio of dis-
tances between those parallels is “reproduced” in the pro-
portion of the segments, formed on any line which cuts
across all three. Taking in particular the line through O
and P1 (which intersects P2P3 at N) we conclude that 

NO : NP1 : : T23 : T123 .

By “inverse projection,” the same holds true for the ratio
of MV and MU1, and by similarity, also for the ratio
between VV′ and U1U1′.

Our job is essentially finished. We have found, that
when the height of U1 is changed by any amount “d,” the
height of V changes by an amount whose ratio to d is that
of T23 to T123. In other words, the change in height of V
will be d 3 (T23 / T123); or, to put still another way, 

T123 3 change of height of V

= T23 3 change of height of U1 .
What happens, then, if we start off with all the heights

equal to zero, and raise the heights of the vertices, one at
a time, to the given heights h1, h2, h3, respectively? Rais-
ing U1 from height zero to h1, will increase the height of
V, from zero to h1 3 (T23 / T123). Next (by the same rea-
soning, applied to U2 instead of U1), raising U2 to the
height h2, will increase the height of V by an additional
amount equal to h2 3 (T31/ T123).

Finally, raising U3 to the height h3, will raise V by an
additional amount h3 3 (T12 / T123).  The final height h of
V, will therefore be equal to

[h1 3 (T23 / T123)] + [h2 3 (T31/ T123)] + [h3 3 (T12 / T123)],

or, in other words, h 3 T123 is equal to

(h1 3 T23) + (h2 3 T31) + (h3 3 T12) .

All of this referred to the case where points P1, P2, P3
are separated by such large angles, that O lies within
triangle P1P2 P3 (=T123). In the actual case before us, the

FIGURE 13.6. Tilt the plane of the U’s up from U1 to U1′, to
generate V ′. What is the functional relationship between

FIGURE 13.7. The division of segment NP1 by point O is
proportional to the ratio of the areas of triangles T23 and T123 .



triangle T123 is very small, and O lies outside it. (Figure
13.8a) Nevertheless, it is not difficult to see—and the
reader should carry this out as an exercise—that noth-
ing essential is changed in the fabric of relationships,
except for one point of elementary analysis situs: We
were careful to observe a consistent ordering in the ver-
tices and the triangles, corresponding to rotation
around O in the direction of motion of the planet. In
keeping with this, “T31” referred to the triangle whose
angle at O is the angle swept out in a continuing rota-
tion, from P3 back to P1. (Figure 13.8b) In our present
case, where O lies outside triangle P1P2P3 and the dis-
placements from P1 to P2 and P2 to P3 are very small,
the angle of that rotation is nearly 360°. (Figure 13.8c)
In mere form, the resulting triangle OP3P1 is the same
as OP1P3, and the areas T31 and T13 both refer to the
same form; however, their orientations are different.
(Figure 13.8d)

As Gauss emphasized in his discussions of the analysis
situs of elementary geometry, our accounting for areas
must take into account the differences in orientation, so

the proper value to be ascribed to T31 must be the same
magnitude as T13, but with the opposite sign. In other
words, T31 = – T13. Examining the constructions defining
the functional dependence of h on h1, h2, and h3, for the
case where the angle from P3 to P1 is more than 180°, we
find that this change of sign is indeed necessary, to give the
correct value for the contribution of the height of U to the
height of V, namely, h2 3 – (T13 / T123). In fact, when we
raise U2, the height of V is reduced. For that reason the
relationship of the areas and heights, in the case of the
three positions of Ceres, takes the form

h 3 T123 = ( h1 3 T23 ) – ( h2 3 T13 ) + ( h3 3 T12 ),

or, 

( h1 3 T23 ) – ( h2 3 T13 ) + ( h3 3 T12 )
T123 = __________________________________  .

h

This is a starting point for evaluating the “triangular
differential” T123, which measures the effect of the space-
time curvature in the small.

—JT
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FIGURE 13.8. (a) Functional relationship of segments
UU′ and VV′, in the case when point O lies outside
T123 . (b) In the earlier case, triangular area T31 was
external to T12 ,T23 . (c) Triangular areas T12 ,T23 ,T13
in the new configuration. (d) Geometrical conversion
between the two cases, in the process of which the
orientation of triangle T31 is reversed.



easily surveyed from the work we have already done.
The crux of Gauss’s approach, throughout, lies in

his focussing on the relationship between what we
have called the “triangular differential” formed
between any three positions of a planet in a Keplerian
orbit, and the physical characteristics of the orbit as a
whole. (Figure 14.1)

That relationship is implicit in the Gauss-Kepler con-
straints, and particularly in the “area law,” according to
which the areas swept out by the planet’s motion between
any two positions, are proportional to the corresponding
elapsed times. 

Recall our first pathway of attack on the Ceres prob-
lem. It was based on the observation, that the area of
the orbital sector between any two of the three given
positions, is only slightly larger than the triangular
area, formed between the same two positions (and the
center of the sun). On the other hand, we found that
the values of those same triangular areas—or, rather,
the ratios between them—determined the spatial rela-
tionship between the three Ceres positions, as expressed
in terms of the “parallelogram law” of displacements.
(Figure 14.2) We discovered a method for determining
the positions of Ceres (or at least one of them), given
the values of the triangular ratios, by applying those
values to the known positions of the Earth, adducing a
discrepancy resulting from the difference in curvature
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CHAPTER 14

On to the Summit

If our several-chapters’ journey of rediscovery has
often seemed like climbing a steep mountain, then
this chapter will take us to the summit. From there,

the rest of Gauss’s solution will lie below us in a valley,
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FIGURE 14.2. In Chapter 10,
we found that the
intermediate position P2 of
Ceres can be related to the other
two positions P1,P3 in the
following way: P2 is the resultant
of a combination (according to the
“parallelogram law”) of two
displacements OQ1, OQ2 along the
axes OP1 and OP2 , respectively, the
positions of Q1 and Q3 being
determined by the relationships 

FIGURE 14.1. Gauss has focussed on the relationship between
the orbital sectors, the triangular areas, the orbital parameter
(which is equal to the height of V), and the characteristics of
the orbit as a whole.

OQ1 T23______ = _____ , and
OP1 T13

OQ3 T12______ = _____ .
OP3 T13
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between the Earth and Ceres orbits, and then recon-
structing Ceres’ position from that discrepancy by a
kind of “inverse projection.” (Figure 14.3)

The obvious difficulty with our method, lay in the cir-
cumstance, that we had no a priori knowledge of the exact
ratios of triangular areas, required to carry out the con-
struction. At that point, we could only say that the ratios
must be “fairly close” to the ratios of the corresponding
orbital sectors, whose values we know to be equal to the
ratios of the elapsed times according to the “area law.”
Our first inclination was to try to ignore the difference
between the triangular and sectoral areas, and to apply the
known ratios of elapsed times to obtain an approximate
position for the planet. Unfortunately, a closer analysis of
the effect of any given error on the outcome of the con-
struction, showed that the slight discrepancy between tri-
angles and sectors can produce an unacceptable final error
of 20 percent, or even more (depending on the actual
dimensions of Ceres’ orbit). This left us with no alterna-
tive, but to look for a new principle, allowing us to esti-
mate the magnitude of the difference between the curvi-
linear sectors and their triangular counterparts.

We noted, as Gauss did, that the largest discrepancy
occurs in the case between the first and third positions, P1
and P3, which are the farthest apart. Comparing sector
S13 with triangle T13, the difference between the two is
the lune-shaped area between the orbital arc and the
chord connecting P1 and P3. (Figure 14.4) Most of that

area belongs to the triangle formed between P1, P3 and
the intermediate position P2, a triangle we designated
T123. Gauss realized, that the key to the whole Ceres
problem, is to get a grip on the magnitude of that “trian-
gular differential,” which expresses the effect of the cur-
vature of Ceres’ orbit over the interval spanned by the
three positions. This “local” curvature reflects, in turn,
the characteristics of the entire orbit.

Given the multiple, interconnected variabilities
embodied in the notion of an arbitrary conic-section
orbit, we cannot expect a simple, linear pathway to the
required estimate. We must be prepared to carry out a
somewhat extended examination of the array of geomet-
rical factors which combine to determine the magnitude
of T123. Our strategy will be to try to map the essential
feature of that interconnectedness, in terms of a relation-
ship of angles on a single circle.

In doing so, we are free to make use of simple special
cases and numerical examples, as “navigational aids” to
guide our search for a general solution.

Accordingly, look first at the simplified, hypothetical
case of a circular orbit. In that case, the planet’s motion is
uniform; the angles swept out by the radial lines to the
sun are proportional to the corresponding elapsed times,
divided by the total period T of the orbit. According to
Kepler’s laws, T 2 = r3, so T is equal to the three-halves
power of the circle’s radius (r 3/ 2).

At first glance the area T123 is a somewhat complicated
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FIGURE 14.3. In Chapter 11, we located Ceres’ position P2 on plane Q, using a construction pivoted on the discrepancy between the
curvatures of the orbits of Earth (E1E2E3 ) and Ceres (P1P2P3 ) .



function of the angles at the sun. But there is an underly-
ing harmonic relationship expressed in a beautiful theo-
rem of Classical Greek geometry, which says that the area
of a triangle inscribed in a circle, is equal to the product of the
sides of the triangle, divided by four times the circle’s radius.
(Figure 14.5) Applying this to our case, the area T123 is
equal to the product of the chords P1P2, P2P3, and P1P3,
divided by four times the orbital radius. (Figure 14.6)

Now, to a first approximation, when the planet’s posi-
tions P1, P2, P3 are not too far apart, the length of each
such chord is very nearly equal to the corresponding arc
on the circle. The latter, in turn, is equal in length to the
total circumference of the circle, times the ratio of the
elapsed time for the arc to the full period of the circular
orbit [i.e., 2π r 3 (elapsed time / r 3/ 2)]. Applying this, we
can estimate T123 by routine calculation as follows:

1T123 . ___ (P1 P2 3 P2 P3 3 P1 P3)
4r

1 t2−t1= ___ 3 [2π r 3 x_____ c]4r r 3/ 2

t3–t2 t3–t13 [2π r 3 x _____ c] 3 [2π r 3 x _____ c]r 3/ 2 r 3/ 2

( t2−t1 ) 3 ( t3–t2 ) 3 ( t3–t1 )
= 2π 3 3 ________________________

r 5/ 2

(the . symbol means “approximately equal to”).
What is of interest here, is not the details of the calcu-

lation, but only the general form of the result, which is to
approximate T123 by a simple function of the elapsed
times and one additional parameter (the radius). Can we
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develop a similar estimate for T123, without making any
assumption about the specific shape of the Keplerian
orbit? It is a matter of evoking the higher, relatively con-
stant curvature, which governs the variable curvatures of
non-circular orbits. Gauss had reason to be confident,
that, on the basis of his method of hypergeometrical and
modular functions, and guided by numerical experi-
ments on known orbits, he could develop the required
estimate—one in which the role of the radius in a circu-
lar orbit, would be played by some combination of the
sun-Ceres distances for P1, P2, P3.

C

r

B

A

FIGURE 14.5. Classical theorem of Greek geometry: The
area of any triangle ABC inscribed in a circle, is equal to
(AB 3 BC 3 CA)/4r, where AB,BC,CA are the chords
forming the sides of the triangle, and r is the radius.

r
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FIGURE 14.6. Apply the Classical theorem to triangle T123 :
area T123 = (P1 P2 3 P2 P3 3 P1 P3 )/4r.

T13

T123

OO

P3

P2 P1
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FIGURE 14.4. The lune-shaped difference between S13 and
T13 is largely constituted by triangle T123 .
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Nevertheless, a worrying thought occurs to us at this
point: What use is a whole elaborate investigation con-
cerning T123, if the result ends up depending on an
unknown, whose determination is the problem we set
out to solve in the first place? The sun-Ceres distance, is
no less an unknown than the Earth-Ceres distance; in
fact, each can be determined from the other, by “solving”
the triangle between the Earth, Ceres, and the sun, whose
angle at the “Earth” vertex is known from Piazzi’s mea-
surements. (Figure 14.7) But, if neither of them are
known, what use is the triangular relationship? And if, as
it looks now, the necessary correction to our initial, crude
approach to calculating the Earth-Ceres distance, turns
out to depend upon a foreknowledge of that distance,
then our whole strategy seems built on sand.

But, don’t throw in the towel! Perhaps, by combining
the various relationships and estimates, and using one to
correct the other in turn, we can devise a way to rapidly
“close in” on the precise values, by a “self-correcting”
process of successive approximations. This, indeed, is
exactly what Gauss did, in a most ingenious manner.

Before getting to that, let’s dispense with the immedi-
ate task at hand: to develop an estimate for the “differen-
tial” T123, independently of any a priori hypothesis con-
cerning the shape of the orbit.

As already mentioned, the task in front of us involves a
multitude of interconnected variabilities, which we must
keep track of in some way. Although these variabilities
are in reality nothing but facets of a single, organic unity, a
certain amount of mathematical “bookkeeping” appears
unavoidable in the following analysis, on account of the
relative linearity of the medium of communication we are
forced to use. Contrary to widespread prejudices, there is
nothing sophisticated at all in the bookkeeping, nor does
it have any content whatsoever, apart from keeping track
of an array of geometrical relationships of the most ele-
mentary sort. The sophisticated aspect is implicit,
“between the lines,” in the Gauss-Kepler hypergeometric
ordering which shapes the entire pathway of solution.

The essential elements are already on the table, thanks
to last chapter’s work on the conical geometry underlying
the orbit of Ceres. Our investigation of the relationship
between the triangular areas T12, T23, T13, and T123, the
heights of points on the cone corresponding to P1, P2, P3,
and Gauss’s orbital parameter h, yielded a conclusion
which we summarized in the formula

( h1 3 T23 ) – ( h2 3 T13 ) + ( h3 3 T12 )
T123 = __________________________________

h
(1)

(shown in Figure 14.1).
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FIGURE 14.7. Relationship of unknowns in the sun-Ceres-Earth configuration. (a) The angle f is known
from Piazzi’s observations, and the Earth-sun distance D is also known. This defines a functional
relationship between the unknown Earth-Ceres distance d and the unknown sun-Ceres distance r, as shown
in (b). (b) To each hypothetical value of r, there corresponds a unique value of d, consistent wth the known
values of f and D.
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Two immediate observations on this account: First,
recall our choice of 90º for the apex angle of the cone.
Under that condition, the heights h1, h2, h3 will be the
same as the radial distances of P1, P2, P3 from the sun. We
shall denote the latter r1, r2, r3.

Secondly: According to the Kepler-Gauss con-
straints, the square root of the half-parameter is propor-
tional to the ratio of the sectoral areas swept out to the
elapsed times. (SEE Chapter 8) We also determined the
constant of proportionality, which amounts to multiply-
ing the elapsed time by a factor of π. The half-parameter
itself will then be equal to the quotient of the product of
the areas swept out in any given pair of time intervals,
divided by π 2 times the product of the corresponding
elapsed times. So, for example, we can combine the
relationships

S12√h
_

= ____________ ,
(t2−t1) 3 π

S23√h
_

= ____________
(t3−t2) 3 π

(by multiplying), to get

S12 3 S23h = ___________________ . (2)
(t2−t1) 3 (t3−t2) 3 π2

This, according to Equation (1) above, is the magni-
tude by which we must divide ( r1 3 T23 ) – ( r2 3 T13 )
+ ( r3 3 T12 ), to obtain the value of the “triangular dif-
ferential” T123.

With that established, take a careful look at the combi-
nation of the radii r1, r2, r3 and the triangular areas T23,
T13, and T12, entering into the value of T123. Those trian-
gular areas are determined by the array of vertex angles
at the sun, i.e., the angles formed by the radial sides OP1,
OP2, OP3, together with the values of r1, r2, r3 which mea-
sure the lengths of the sides. These are all interconnected,
by virtue of the fact that P1, P2, P3 lie on one and the same
conic section. Let us try to “crystallize out” the kernel of
the relationship, by focussing on the angles and attempt-
ing to “project” the entire array in terms of relationships
within a single circle.

There is a simple relationship between area and sides
of a triangle, which can help us here. If we multiply one
side of a triangle by any factor, while keeping an adjacent
side and the angle between them unchanged, then the
area of the triangle will be multiplied by the same factor.
So, for example, if we double the length of the side B in a
triangle with sides A, B, C, while keeping the length of A
and the angle AB constant, then the resulting triangle of
sides A, 2B, and some length C′, will have an area equal
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to twice that of the original triangle. (Figure 14.8) The
reason is clear: Taking A as the base, doubling B increases
the altitude of the original triangle by the same factor,
while the base remains the same. Hence the area—which
is equivalent to half the base times the altitude—will also
be doubled. Similarly for multiplying or dividing by any
other proportion. 

Applying this to T23, for example, notice that its
longer sides are radial segments from the sun, having
lengths r2 and r3. (Figure 14.9a) If we divide the first side
by r2 and the second side by r3, then we get a triangular
area T23′, whose corresponding sides are now of unit
length, and whose area is T23 divided by the product of r2
and r3. Turning that around, the area T23 is equal to 
r2 3 r3 3 T23′. The product r1 3 T23, which enters into
our calculation of the “triangular differential,” is there-
fore equal to r1 3 r2 3 r3 3 T23′.

The same approach, applied to T13, yields the result
that 

T13 = r1 3 r3 3 T13′ ,

and

r2 3 T13 = r1 3 r2 3 r3 3 T13′ .

Similarly for T12. In each case, the product of all three
radii is a common factor. Taking that common factor into
account, we can now “translate” Equation (1) in terms of
the smaller triangles, into

( r1 3 r2 3 r3 ) 3 ( T23′ – T13′ + T12′ )
T123 = ______________________________  . (3)

h

Note that the new triangles, entering into this “dis-
tilled” relationship, have the same apex angles at the
sun, as the original triangles, but the lengths of the
radial sides have all been reduced to 1. (Figure 14.9b)
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FIGURE 14.8. Doubling a side of a triangle, while keeping
the adjacent side and angle constant, doubles the area of the
triangle.
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To put it in another way: We have “projected” the
Ceres orbit onto the unit circle in Figure 14.9, by cen-
tral projection relative to O; the triangles T23′, T13′,

T12′ are formed in the same way as the old ones, but
using instead the points P1′, P2′, P3′ on the unit circle,
which are the images of Ceres’ positions P1, P2, P3
under that projection. The magnitude expressed as
T23′ – T13′ + T′12, is just the triangle between P1′, P2′,
P3′ on the unit circle. Using T123′ to denote that new
“triangular differential” inscribed in the unit circle,
our latest result is

(r1 3 r2 3 r3) 3 T123′T123 = _____________________ . (4)
h

Keep in mind our earlier conclusion [Equation (2)],
that h is the product of the sectors  S12 and S23, divided by
π2 and the product of the elapsed times.

What we have accomplished by this analysis is, in
effect, to reduce the geometry of an arbitrary conic-sec-
tion orbit, to that of a simple circular orbit. Indeed, the
vertices of the triangular area T123′, the positions P1′, P2′,
P3′, all lie on the unit circle, and the area T123′ depends
only on the angles subtended by Ceres’ positions at the
sun. (Figure 14.10)

Now, we can apply the same theorem of Classical
Greek geometry, as we earlier evoked for the case of a
circular orbit. The area of the triangle is equal to the
product of the sides, divided by four times the radius of
the circle upon which the vertices lie (in this case, the unit
circle). In this case the result is
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FIGURE 14.9. “Reduction” of relationships on non-circular orbit to relationships in a circle. (a) The area of triangle T23′ , obtained
by projecting P2 and P3 onto the circle of unit radius, is equal to T23/(r2 3 r3 ). (b) Similarly for triangles T12′ and T13′ . The
original apex angles at the sun are preserved, but the lengths are all reduced to 1.

FIGURE 14.10. Triangular area T123′, inscribed in the unit
circle, depends only on the angles subtended at the sun (O).
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T123′

(length P1′P2′ 3 length P2′P3′ 3 length P3′P1′)= _______________________________________ .
4 (5)

So far, we have employed rigorous geometrical rela-
tionships throughout. To the extent the orbital motion of
Ceres is governed by the Kepler-Gauss constraints, and
to the extent the theorems of Classical Greek geometry
are valid for elementary spatial relationships on the scale
of our solar system, our calculation of T123′ and T123 is
precisely correct.

At this point, Gauss evokes some apparently rather
crude estimates for the factors which go into the prod-
uct for T123′. In fact, they are the same sort of crude
approximations, which we attempted in our original
attempt to calculate the Earth-Ceres distance. If that
sort of approximation introduced an unacceptable
degree of error then, how dare we to do the same thing,
now?

Remember, we had determined that the “differential”
T123, whose magnitude we now wish to estimate,
accounts for nearly all of the percentual error, which our
earlier approach would have introduced into our calcu-
lation of the Earth-Ceres distance, by ignoring the dis-
crepancy between the orbital sectors and the triangular
areas. Gauss remarked, in fact, that the discrepancies
corresponding to pairs of adjacent positions, namely
between  S12 and T12 and between S23 and T23, are prac-
tically an order of magnitude smaller than the discrepan-
cy between S13 and T13, i.e., the one corresponding to the
extreme pair of positions, which span the relatively
largest arc on the orbit. (Figures 12.2 and 14.4) On the
other hand, the difference between  S13 and T13, consists
of T123 together with the small differences  S12–T12 and
S23–T23. As a result, T123 supplies the approximate size of
the “error” in our earlier approach, up to quantities an
order of magnitude smaller.

An “error” introduced in an approximate value for
T123, thus has the significance of a “differential of a dif-
ferential.” In numerical terms, it will be at least one order
of magnitude smaller—and the final result of our calcu-
lation of Ceres at least an order of magnitude more pre-
cise—than the error in our original approach, which
ignored the “differential” altogether.

Also remember the following: As a geometrical mag-
nitude, T123 measures the effect of curvature of the plane-
tary orbit over the interval from P1 to P3. The relative
crudeness of the approximations we shall introduce now,
concern the order of magnitude of the change in local cur-
vature over that interval. But once these “second-order”
approximations have served their purpose, permitting us
to obtain a tolerable first approximation for the Earth-

P3′

P2′
P1′

O

1
T23′

T12′

q

Ceres distance, we shall immediately turn around, and
use the coherence of a first-approximation Keplerian
orbit, to eliminate nearly the entire error introduced
thereby.

Finishing Up the Job
Turn now to the final estimation of the “differential”
T123. Our immediate goal is to eliminate all but the most
essential factors entering into the function for T123, devel-
oped above, and relate everything as far as possible to the
known, elapsed times.

First of all, remember that P1′, P2′, P3′ lie on the unit
circle; the segments P2′P1′, P3′P2′, P3′P1′ are thus chords
of arcs on the unit circle, at the same time form the
bases of the rather thin isosceles triangles, with common
apex at O, whose areas we have designated T12′, T23′,
and T13′. (Figure 14.11) The altitudes of those trian-
gles are the radial lines connecting O with the mid-
points of the respective chords. Now, if the apex angles
at O are relatively small, the gap between the chords
and the circular arcs will be very small, and the radial
lines to the midpoints of the chords will be only very
slightly shorter than the radius of the circle (unity). Let
us, by way of approximation, take the altitudes of the
triangles to be equal to unity. In that case, the areas of
the triangles will be half the lengths of their bases, or,
conversely,

FIGURE 14.11. Estimating the areas of triangles T12′, T23′,
T13′. The area of a triangle is equal to (half the base) 3
(the altitude). Taking P1′ P2′ as the base of triangle T12′,
the corresponding altitude is the length of the dashed line
Oq. When P1′ and P2′ are close together, Oq will be only
very slightly smaller than the radius of the circle, which is
1. Hence, the area of T12′ will be very nearly (1/2) 3
(P1′ P2′ ). Similarly, area T23′ . (1/2) 3 (P2′ P3′ ), and
area T13′ . (1/2) 3 (P1′ P3′ ).



P2′P1′ = (very nearly) 2 3 T12′ ,

P3′P2′ = (very nearly) 2 3 T23′ ,

P3′P1′ = (very nearly) 2 3 T13′ .

Applying these approximations to Equation (5), we
find that T123′ is approximately equal to

(2 3 T12′ ) 3 (2 3 T23′ ) 3 (2 3 T13′ )_________________________________ , (6)
4

or twice the product of T12′, T23′, and T13′.
This is a very elegant result. But, what does it tell us

about the relationship of T123 to T12, T23, and T13 on the
original, non-circular orbit? Remember how we obtained
the triangular areas entering into the above product. In
numerical values, T12′, T23′, and T13′ are equal to the
quotients of T12/(r1 3 r2), T23/(r2 3 r3), T13/(r1 3 r3),
respectively. Expressed in terms of those original trian-
gles, our approximate value for T123′ becomes

T12 3 T23 3 T132 3 __________________________ . (7)
(r1 3 r2) 3 (r2 3 r3) 3 (r1 3 r3)

Note, that each of r1, r2, r3 enters into the long product
exactly twice.

Finally, use this approximate value for T123′, to com-
pute T123, according to relationship (4) above, 
noting that half of the radii factors cancel out in the
process:

(r1 3 r2 3 r3) 3 T123′T123 = _____________________ [by Equation (4)]
h

= [very nearly, by Equation (7)]

( T12 3 T23 3 T13 ) / (r1 3 r2 3 r3)2 3 _______________________________ .
h (8)

A bit of bookkeeping is required, as we take into
account our calculation of h, as the quotient of the prod-
uct of S12 and S23, divided by π2 times the product of the
corresponding elapsed times. [Equation (2)] The result
of dividing by h, is to multiply by π2 and the elapsed times,
and divide by the product of the sectors. Assembling all
these various factors together, with Equation (8), our
approximate value for T123 becomes

π2 3 (t2−t1) 3 (t3–t2) 3 T12 3 T23 3 T132 3 _____________________________________ .
S12 3 S23 3 r1 3 r2 3 r3 (9)

For reasons already discussed above, we can permit
ourselves simplifying approximations at this point, as fol-
lows. For a relatively short interval of motion, the sun-
Ceres distance does not change “too much.” Thus, we
can approximate the product r1 3 r2 3 r3 by the cube of
the second distance r2, i.e., by the product r2 3 r2 3 r2,
without introducing a large error in percentual terms.
Next, observe that T12 and T23 appear in the numerator,
and  S12 and S23 in the denominator, of the quotient we
are now estimating. If we simply equate the correspond-
ing triangular and sectoral areas—whose discrepancies
are practically an order of magnitude less than that
between  S13 and T13—we introduce an additional, but
tolerable percentual error into the value of T123. Apply-
ing these considerations to Equation (9), we obtain, as
our final approximation, the value
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FIGURE 14.12. S13 is (to a first order of approximation) very nearly equal to T13 + T123 .
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π2 3 (t2−t1) 3 (t3–t2)T123 . 2 3 ____________________ 3 T13
. (10)

r2
3

Recall the original motive for this investigation, which
was to “get a grip” on the relationship between the sec-
toral area  S13 and the triangle T13. What we can say now,
by way of a crucially useful approximation, is the follow-
ing. Since T123 makes up nearly the whole difference
between the triangle T13 and the orbital sector S13 (Fig-
ure 14.12),

S13 = (to a first order of approximation) T13 + T123 ,

or, stating this in terms of a ratio,

S13 T123____ = (very nearly)  1 + _____ .
T13 T13

On the other hand, we just arrived in Equation (10)
at an approximation for T123, in which T13 is a factor.
Applying that estimate, we conclude that

S13 π 2 3 (t2−t1) 3 (t3–t2)____ . 1 + x 2 3 ___________________ c .
T13 r2

3

The hard work is over. We have arrived at the crucial
“correction factor,” which Gauss supplied to complete his
first-approximation determination of Ceres’ position. For
some one hundred fifty years, following the publication
of Gauss’s Theory of the Motion of the Heavenly Bodies
Moving about the Sun in Conic Sections, astronomers
around the world have used it to calculate the orbits of
planets and comets. All that remains to be done, we shall
accomplish in the next chapter.

—JT
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CHAPTER 15

Another Battle Won
My dear friend, you have done me a great favor by your
explanations and remarks concerning your method. My lit-
tle doubts, objections, and worries have now been removed,
and I think I have broken through to grasp the spirit of the
method. Once again I must repeat, the more I become
acquainted with the entire course of your analysis, the
more I admire you. What great things we will have from
you in the future, if only you take care of your health!

—Letter from Wilhelm Olbers to Gauss,
Oct. 10, 1802

We now have the essential elements, out of
which Gauss elaborated his method for deter-
mining the orbit of Ceres. Up to this point,

the pathway of discovery has been relatively narrow;
from now on it widens, and many alternative approaches
are possible. Gauss explored many of them himself, in
the course of perfecting his method and cutting down on
the mass of computations required to actually calculate
the elements of the orbit. The final result was Gauss’s
book, Theory of the Motion of the Heavenly Bodies Moving
about the Sun in Conic Sections, which he completed in
1808, seven years after his successful forecast for Ceres.
As Gauss himself remarked, the exterior form of the
method had evolved so much, that it barely resembled
the original. Nevertheless, the essential core remained
the same.

We have tried to follow Gauss’s original pathway as
much as possible. That pathway is sketched in an early
manuscript entitled, Summary Overview of the Method
Used To Determine the Orbits of the Two New Planets (the
title refers to the asteroids Ceres and Pallas). The Sum-
mary Overview was published in 1809, but is probably
close to, or even identical with, a summary that Gauss
prepared for Olbers in the Fall of 1802. The latter docu-
ment was the subject of several exchanges of letters back
and forth between the two astronomers, where Olbers
raised various questions and criticisms, and challenged
Gauss to explain certain features of the method. Fortu-
nately, that correspondence, which provides valuable
insights into Gauss’s thinking on the subject, has been
published. We shall quote from it in the last chapter, the
stretto.

Our goal now is to complete Gauss’s method for con-
structing a first approximation to the orbit of Ceres from
three observations.

In earlier discussions, we discovered a method for
reconstructing the second of the three positions of the
planet, P2, from the values of two crucial “coefficients”—
namely, the ratios of triangular areas T12 : T13 and
T23 : T13—together with the data of the three observations
and the known motion of the Earth. The difficulty with
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our method lay in the circumstance, that the values of
required coefficients cannot be adduced from the data in
any direct way.

Our initial response was to use, instead of the triangu-
lar areas, the corresponding orbital sectors whose ratios
S12 : S13 and S23 : S13 are known from Kepler’s “area law”
to be equal to the ratios of the elapsed times, t2−t1 : t3−t1
and t3−t2 : t3−t1. Unfortunately, the magnitude of error
introduced by using such a crude approximation for
the coefficients, renders the construction nearly use-
less. Accordingly, we spent that last three chapters
working to develop a method for correcting those val-
ues, to at least an additional degree or order of magni-
tude of precision.

The immediate fruit of that endeavor, was an estimate
for the value of the ratio S13 : T13. As it turned out, S13 is
larger than T13 by a factor approximately equal to

π 2 3 (t2−t1) 3 (t3–t2)1 + x 2 3 ___________________ c .
r2

3

Let us call that magnitude, slightly larger than one,
“G” (for Gauss’s correction). So, S13 . G 3 T13. What
follows concerning the ratios T12 : T13 and T23 : T13?

We already determined, that the main source of
error in replacing T12 : T13 (for example) by the corre-
sponding ratio of orbital sectors, S12 : S13, comes from
the discrepancy between the denominators. The percent-
age error arising from the discrepancy between the
numerators is an order of magnitude smaller. We can
now correct the discrepancy in the denominators, at
least to a large extent. S13 being larger than T13 by a fac-
tor of about G, means that the quotient of any magni-
tude by T13, will be larger, by that same factor, than the
corresponding quotient of the same magnitude by S13.
In particular,

T12 T12____ . G 3 ____ .
T13 S13

If, at this point, we were to replace T12 by S12 in the
numerator, we would thereby introduce an error, an
order of magnitude smaller than that which we have just
“corrected” using G. Granting that smaller margin of
error, and carrying out the mentioned substitution, we
arrive at the estimate

T12 S12 t2−t1____ . G 3 ____ = G 3 ______ .
T13 S13 t3−t1

For similar reasons,

T23 t3−t2____ . G 3 _____ .
T13 t3−t1

Recall, that the ratios of the elapsed times constituted
our original choice of coefficients for the construction of
Ceres’ position P2. Our new values are nothing but the
same ratios of elapsed times, multiplied by Gauss’s “cor-
rection factor” G. If our reasoning is valid, this simple
correction should be enough to yield at least an order-of-
magnitude improvement over the original values. By
applying the new, corrected coefficients in our geometri-
cal method for reconstructing the Ceres position P2 from
the three observations, we should obtain an order-of-
magnitude better approximation to the actual position.
Gauss verified that this is indeed the case.

The story is not yet over, of course. We still have the
successive tasks: 

(i) To determine the other two positions of Ceres, P1
and P3;

(ii) To calculate at least an approximate orbit for
Ceres; and 

(iii) To successively correct the effect of various
errors and discrepancies, until we obtain an orbit fully
consistent with the observations and other boundary
conditions, taking possible errors of observation into
account.

We Face a Paradox
But before proceeding, haven’t we forgotten something?
Gauss’s factor G is not a fixed, a priori value, but depends
on the unknown sun-Ceres distance r2. We seem to face
an unsolvable problem: we need r2 to compute G, but we
need G to compute the Ceres position, from which alone
r2 can be determined. (Figure 15.1)

As a matter of fact, this kind of self-reflexivity is typical
for Gauss’s hypergeometrical domain. Far from constitut-
ing the awesome barrier it might seem to be at first
glance, the self-reflexive character of hypergeometric
and related functions, is key to the extraordinary simpli-
fication which the analysis situs-based methods of Gauss,
Riemann, and Cantor brought to the entire non-algebra-
ic domain. These functions cannot be constructed “from
the bottom up,” but have to be handled “from the top
down,” in terms of the characteristic singularities of a
self-reflexive, self-elaborating complex domain. A
“secret” of much of Gauss’s work, is how that higher
domain efficiently determines all phenomena in the low-
er domains, including in the realm of arithmetic and
visual-space geometry.

It was from this superior standpoint, that Gauss devel-
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oped a variety of rapidly convergent numerical series for
practical calculations in astronomy, geodesy, and other
fields. Using those series, we can compute the values of
hypergeometric and related functions to a high degree of
precision. However, the numerical properties of the series
coefficients, their rates of convergence, their interrela-
tionships, and so on, are all dictated “from above,” by the
analysis situs of the complex domain—the same principle
which is otherwise exemplified by Gauss’s work on bi-
quadratic residues. Although an explicit formal develop-
ment of hypergeometric functions is not necessary for
Gauss’s original solution, the higher domain is always
present “between the lines.”

In the present case, Gauss’s practical solution amounts
to “unfolding the circle” of the reflexive relationship
between r2 and G, into a self-similar process of successive
approximations to the required orbit, analogous to a
Fibonacci series.

The first step, is to select a suitable initial term, as a first
approximation. For the case of Ceres we might conjecture,
as von Zach, Olbers, and others did at the time, that the
orbit lies in a region approximately midway between the
orbits of Mars and Jupiter. That means taking an r2 close
to 2.8 A.U. The corresponding value of G, computed with
the help of this value and elapsed times of about 21 days
between the three observations, comes out to about 1.003.

Another option, independent of any specific conjec-
ture concerning the position of the orbit, would be to car-
ry through our construction for P2 without Gauss’s correc-
tion, and to compute the Ceres-sun distance r2 from the
rough approximation for the Ceres position.

Having selected an initial value for r2, the next step
is to check, whether it is consistent with the self-reflex-
ive relationship described above. Starting from the pro-
posed value of r2 and the elapsed times, calculate the
corrective factor G from the formula stated above; then,
use that G to determine a set of “corrected” coefficients,
and construct from those a new estimate for Ceres’
position P2.

Now, compare the distance between that position and
the sun, with the original value of r2. If the two values
coincide to within a tolerable error, then we can regard the
entire set of r2, P2, G, together with the associated coeffi-
cients, as consistent and coherent, and proceed to deter-
mine an orbit from them. If the two values of r2 differ sig-
nificantly, then we know the posited value of r2 cannot be
correct, and we must modify it accordingly. A mere trial-
and-error approach, although feasible, is extremely labori-
ous. Much better, is to “close in” on the required value, by
successive approximations which take into account the
functional dependence of the initial and calculated values,
and in particular the rate of change of that dependence. By
this sort of analysis, which we shall not go into here,
Gauss could obtain the desired coincidence (or very near
coincidence) after only a very few steps.

How To Find the Other Two 
Positions of Ceres
Let us move on to the next essential task. Suppose we
have succeeded in obtaining a position P2 and corre-
sponding distance r2 which are self-consistent with our
geometrical construction process, in the sense indicated
above. How can we determine the other two positions of
Ceres, P1 and P3?

As we might expect, the necessary relationships are
already subsumed by our original construction. Readers
should review the essentials of that construction, with the
help of the relevant diagrams. Recall, that P2 was
obtained as the intersection of a certain plane Q with the
“line of sight” L2—the line running from the Earth’s sec-
ond position E2 in the direction defined by the second
observation. The plane Q was determined as follows.
First, we constructed point F, in the plane of the Earth’s
orbit, according to the requirement, that F has the same
relationship to the Earth’s positions E1 and E3, in terms of
the “parallelogram law” of decomposition of displace-

E1

E2

E3

P3

P2
P1

r2

O

FIGURE 15.1. A self-reflexive paradox. We need r2 to
compute Gauss’s “correction factor” G, but we need G to
compute P2 , from which r2 is derived.
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ments, as P2 has to P1 and P3. (Figure 15.2a) For that
purpose, we chose points F1 and F3, located on the lines
OE1 and OE3, respectively, such that

OF1 T23_____ = the estimated value of ____ ,
OE1 T13

and

OF3 T12_____ = the estimated value of ____ .
OE3 T13

We then constructed the point F as the endpoint of the
combination of the displacements OF1 and OF3—i.e., the
fourth vertex of the parallelogram whose other vertices
are O, F1, and F3.

Next, we drew the parallels through F, to the other
two “lines-of-sight” L1 and L3. (Figure 15.2b) Q is the
plane “spanned” by those parallels through F, and the

intersection of plane Q with L2 is our adduced position
for P2. We showed, that this reconstruction of the posi-
tion of Ceres would actually coincide with the real one,
were it not for a margin of error introduced in estimating
the coefficients T12/ T13 and T23 / T13 , as well as in Piazzi’s
observations themselves. We also found a way to reduce
the former error, using Gauss’s correction.

Now, to find P1 and P3, look more closely at the rela-
tionships in the plane Q. Call the parallels to the lines L1
and L3, drawn through F, L1′ and L3′, respectively. (Fig-
ure 15.3) On each of the latter lines, mark off points P1′
and P3′, such that the distance FP1′ is equal to the Earth-
Ceres distance E1P1, and similarly FP3′ is equal to E3P3.
To put it another way: transfer the segments E1P1 and
E3P3 from the base-points E1 and E3, to F, without alter-
ing their directions. 

What is the relationship of P2, to the points F1, P1′,
and P3′? From the “hereditary” character of the entire
construction, we would certainly expect the same coeffi-
cients to arise here, as we adduced for the relationship of
P2 to O, P1, and P3, and used in the construction of F. A
bit of effort, working through the combinations of dis-

L1

L1′

L3

P2

L3′

E2

E3

E1

F

P1

P3

F3

F1

O

L2

P1′

P3′

FIGURE 15.3. Having determined the position of P2 , we
now set out to locate P1 and P3 , by determining P1′ and
P3′ in plane Q at F.

O

E2
E1

E3 F3

F1
F

L3

L2

E3

E2

L1

F

P2 !

E1

plane Q

L3′
L1′

(a)

(b)

FIGURE 15.2. (a) We constructed point F using the
“parallelogram law” of displacements. (b) Once
constructed, plane Q at F must contain P2 as the point of
intersection with line L2 .



placements involved, confirms that expectation.
This leads us to a very simple construction for P1 and

P3. All we must do, is to decompose the displacement
FP2—a known entity, thanks to our construction—into a
combination of displacements along L1′ and L3′. In other
words, construct points Q1′ and Q3′, along those lines, such
that FP2 is the sum of the displacements FQ1′ and FQ3′, in
the sense of the parallelogram law. (Figure 15.4) ( Q1′ and
Q3′ are the “projections” of P2 onto L1′ and L3′, respective-
ly.) Now, P1′ and P3′ are not yet known at this point, but
the “hereditary” character of the construction tells us, as
we remarked above, that the values of the ratios

FQ1′ FQ3′_____ and _____ ,
FP1′ FP3′

are the same as the coefficients used in the construction of
P2, i.e., the estimated values of T23 / T13 and T12/ T13 . Aha!
Using those ratios, we can now determine the distances
FP1′ and FP3′. We have only to divide FQ1′ by the first
coefficient, to get FP1′, and divide FQ3′ by the second coef-
ficient, to get FP3′. That finishes the job, since the lengths
we wanted to determine—namely E1P1 and E3P3—are the
same as FP1′ and FP3′ respectively, by construction.

Finally, by marking off these Earth-Ceres distances
along the “lines of sight” defined by Piazzi’s observations,
we construct the positions P1 and P3, themselves. Another
battle has been won!

—JT
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CHAPTER 16

Our Journey Comes to an End

In the last chapter, we succeeded in constructing at
least to a first approximation, all three of the Ceres
positions. Given the three positions P1, P2, P3 what

could be easier than to construct a unique conic-section
orbit around the sun, passing through those positions?
We can immediately determine the location of the plane
of Ceres’ orbit, and its inclination relative to the ecliptic
plane, by just passing a plane through the sun and any
two of the positions.

To determine the shape of the conic-section orbit,
apply our conical projection, taking the horizontal plane
to represent the plane of Ceres’ orbit. The three points
U1, U2, U3 on the cone, which project P1, P2, P3, deter-
mine a unique plane passing through all three in the con-

ical space. The intersection of that plane with the cone is
a conic section through U1, U2, U3; and the projection of
that curve onto the horizontal plane, is the unique conic
section through P1, P2, P3, with focus at the sun. (Figure
16.1)

As simple as this latter method appears, Gauss reject-
ed it. Why? In the case of Ceres, P1, P2, P3 lie close
together. Small errors in the determination of those three
positions, can lead to very large errors in the inclination
of the plane passing through the corresponding points
U1, U2, U3 on the cone. The result would be so unreliable
as to be useless as the basis for forecasting the planet’s
motion.

To resolve this problem, Gauss chooses a different tac-

FIGURE 15.4. Work “backwards” from P2 to the positions of
P1′ and P3′. “Project” P2 onto the axes L1′,L2′, and use the
fact, that P1′,Q1′ and P3′,Q3′ are related by the same coeffi-
cient as P1 ,Q1 and P3 ,Q3 .



tic. He leaves P2 aside for the moment, and proceeds to
determine the orbit from P1 and P3 and the elapsed time
between them. Gauss developed a variety of methods for
accomplishing this. The simplest pathway goes via
Gauss’s orbital parameter, using the “area law.” Remem-
ber, the value of the half-parameter corresponds to the
“height” of the point V on the axis of the cone, where the
axis is intersected by the plane defining the orbit. If we
know the half-parameter, then that gives us a third point
V, in addition to U1 and U3, with which to determine the
position of the intersecting plane. Unlike P2, the point O
lies far from P1, and P3; the corresponding points V, U1,
U3 on the cone are also well-separated. As a result, the
position of the plane passing through those three points is
much less sensitive to errors in the determination of their
positions, than in the earlier case.

How do we get the value of the half-parameter from
two positions and the elapsed time between them?
According to the Gauss-Kepler “area law,” the area of
the orbital sector between P1 and P3, i.e., S13, is equal to
the product of (the elapsed time t3−t1) 3 (the square root
of the half-parameter) 3 (the constant π). The elapsed
time is already known; if in addition we knew the area of
the sector S13, we could easily derive the value of the
orbital parameter.

Another self-reflexive relationship! The exact value
of S13 depends on the shape of the orbital arc between P1
and P3; but to know that arc, we must know the orbit.
To construct the orbit, on the other hand, we need to
know the orbital parameter, which in turn is a function
of S13.

Again, we can solve the problem using Gauss’s
method of successive approximations. The triangular
area T13, which we can compute directly from the posi-
tions P1 and P3, already provides a first rough approxi-
mation to S13. Better, we use G 3 T13, where G is Gauss’s
correction factor, calculated above. From such an estimat-
ed value for S13, calculate the corresponding value of the
orbital parameter. Next, apply our conical representation
to constructing an orbit, using an approximation of the
half-parameter, namely, the value corresponding to that
estimated value of S13.

Finally, with the help of Kepler’s method of the
“eccentric anomaly,” or other suitable means, calculate
the exact area of the sector S13 for that orbit. If this value
coincides with the value we started with, our job is done.
Otherwise, we must modify our initial estimate, until
coincidence occurs. Gauss, who abhorred “dead mechani-
cal calculation,” developed a number of ingenious short-
cuts, which drastically reduce the number of successive
approximations, and the mass of computations required.

At the end of the process, we not only have the value
of the orbital parameter, but also the orbit itself.

How To Perfect the Orbit
This completes, in broad essentials, Gauss’s construction
of a first approximation to the orbit of Ceres, using only
three observations. Gauss did not base his forecast for
Ceres on that first approximation, however. Remember,
everything was based on our approximation to the Ceres
position P2; our construction of P1 and P3, and the orbit
itself, is only as good as P2.

Gauss devised an array of methods for successively
improving the initially constructed orbit, up to an aston-
ishing precision of mere minutes or even seconds of arc in
his forecasts. Again, the key is the coherence and self-
reflexivity of the relationships underlying the entire
method.

The gist of Gauss’s approach, as reported in the “Sum-
mary Overview,” is as follows. How can we detect a dis-
crepancy between the real orbit and the orbit we have con-
structed? By the very nature of our construction, the first
and third observations will agree precisely with the calculated
orbit: P1 and P3 lie on the calculated orbit as well as the lines
of sight from E1 and E3, and the elapsed time between
them on our calculated orbit will coincide with the actual
elapsed time between the first and third observations.

The situation is different for the intermediate position
P2. If we calculate the position P2 based on the proposed
orbit—i.e., the position forecast at time t2—we will gen-
erally find that it disagrees by a more or less significant
amount, from the “P2” we originally constructed. This
“dissonance” tells us that the orbit is not yet correct. In
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FIGURE 16.1. The elliptical orbit is easily determined from
P1 ,P2 ,P3 , by drawing the plane through the corresponding
points U1 ,U2 ,U3 (whose heights are the distances r1 ,r2 ,r3
now known). However,Gauss rejected that direct method as
being too prone to error when P1 ,P2 ,P3 are close together.
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that case, we should gradually modify our estimate for
P2, until the two positions coincide. Since P2 must lie on
the line-of-sight L2, the Earth-Ceres distance is the only
variable involved.

Again, trial-and-error is feasible in principle, but
Gauss elaborated an array of ingenious methods for suc-
cessive approximation. Once he had arrived at an orbit
which matched the three selected observations in a satis-
factory manner, Gauss compared the orbit with the oth-
er observations of Piazzi, taking into account the vari-

ous possible sources of error. Finally, Gauss could deliv-
er his forecast of Ceres’ motion with solid confidence
that the new planet would indeed be found in the orbit
he specified.

Here our journey comes to an end—or nearly. For
those readers who have taken the trouble to work
through Gauss’s solution with us, congratulations! Next
chapter, we conclude with a stretto, on the issue of “non-
linearity in the small.”

—JT

CHAPTER 17

In Lieu of a Stretto

In this closing discussion, we want to take on a famous
bogeyman, called “college differential calculus.”
Much more can and should be said on this, but the

following should be useful for starters, and fun, too.
Readers may have noticed that Gauss made no use at

all of “the calculus,” nor of anything else normally
regarded as “advanced mathematics,” in the formal sense.
Everything we did, we could express in terms of Classical
synthetic geometry, the favorite language of Plato’s Acad-
emy. Yet Gauss’s solution for Ceres embodied something
startlingly new, something far more advanced in sub-
stance, than any of his predecessors had developed.
Laplace, famed for his vast analytical apparatus and tech-
nical virtuosity, was caught with his pants down.

Gauss’s method is completely elementary, and yet high-
ly “advanced,” at the same time. How is that possible?

Far from being a geometry of fixed axioms, such as
Euclid’s, Platonic synthetic geometry is a medium of
metaphor—a medium akin to, and inseparable from the
well-tempered system of musical composition. So, Gauss
uses Classical synthetic geometry to elaborate a concept of
physical geometry, which is axiomatically “anti-Euclid-
ean.” A contradiction? Not if we read geometry in the
same way we ought to listen to music: the axioms and
theorems do not lie in the notes, but in the thinking
process “behind the notes.”

Through a gross failure of our culture and educational
system, it has become commonplace practice to impose
upon the domain of synthetic geometry, the false,
groundless assumption of simple continuity. It were hard
to imagine any proposition, that is so massively refuted
by the scientific evidence! And yet, if we probe into the
minds of most people—including, if we are honest,
among ourselves—we shall nearly always discover an
area of fanatically irrational belief in simple continuity

and, what is essentially the same thing, linearity in the
small. Here we confront a characteristic manifestation of
oligarchical ideology.

Take, for example, the commonplace notion of circle,
generated by “perfectly continuous” motion. Our imagi-
nation tells us that a small portion of the circle’s circum-
ference, if we were to magnify it greatly, would look
more flat, or have less curvature, than any larger portion
of the circumference. In other words: the smaller the arc,
the smaller the net change of direction over that portion of
the circumference.

Similarly, the standpoint of “college differential calcu-
lus” regarding any arbitrary, irregularly shaped curve, is
to expect that the irregularity will decrease, and the curve
will become simpler and increasingly “smooth,” as we
proceed to examine smaller and smaller portions of it.
This is indeed the case for the imaginary world of college
calculus and analytical geometry, where curves are
described by algebraic equations and the like. But what
about the real world? Is it true, that the adducible, net
change in direction of a physical process over any given inter-
val of space-time, becomes smaller and smaller, as we go from
macroscopic scale lengths, down to ever smaller intervals of
action?

Well, in fact, exactly the opposite is true! As we pursue
the investigation of any physical process into smaller and
smaller scale-lengths, we invariably encounter an increas-
ing density and frequency of abrupt changes in the direc-
tion and character of the motion associated with the
process. Rather than becoming simpler in the small, the
process appears ever more complicated, and its discontin-
uous character becomes ever more pronounced. Our
Universe seems to be a very hairy creature indeed: a “dis-
continuum,” in which—so it appears—the part is more
complex than the whole.
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FIGURE 17.1. A metaphorical
representation of the concept of
“curvature in the small,” using

astronomical cycles. (a) The three
astronomical cycles—the daily rotation of
the Earth on its axis, the annual elliptical
orbit of the Earth around the sun, and the

equinoctial cycle (precession of the
equinoxes)—can be represented mathematically

by the continuous curve traced out by a circle
rolling along a helical path on a torus. 

(b) Each rotation of the circle represents the daily
rotation of the Earth on its axis. (c) 365.2524 turns
comprise a helical loop representing one rotation of

the Earth around the Sun; 26,000 helical loops around
the torus represent one equinoctial cycle.

Here this curve is shown in a series of frames, each
showing a more close-up view. (d) The curvature at every

interval is a combination of the curvature of all three
astronomical cycles, no matter how small.

(a) (c)

(b)

(d)



‘Turbulence in the Small’

The existence of this discontinuum, this “turbulence in
the small” of any real physical process, confronts us with
several notable paradoxes and problems.

Firstly, what is the meaning of that “turbulence”? Why
does our Universe behave that way? How does that char-
acteristic—reflecting an increasing density of singulari-
ties in the “infinitesimally small”—cohere with the
nature of human Reason? Why is a “discontinuum” of
that sort, a necessary feature of the relationship of the
human mind, as microcosm, to the Universe as a whole?

Another paradox arises, which may shed some light
on the first one: When we carry our experimental study
of a process down to the microscopic level, we find it more
and more difficult to identify those features, which corre-
spond to the macroscopic ordering that was the original
object of our investigation.

The analogy of astronomic cycles, which we have
learned something about through the course of our inves-
tigation, might help us to think about the problem in a
more rigorous way. Instead of “macroscopic ordering,”
let us say: a (relatively) long cycle. By the nature of the
Universe, no single cycle exists in and of itself. All cycles
interact, at least potentially; and the existence of any giv-
en cycle, is functionally dependent on a plenitude of
shorter cycles, as well as longer cycles. Now we are ask-
ing the question: how does a given long cycle manifest
itself on the level of much shorter cycles? At first glance,
the action associated with the long cycle becomes more
and more indistinct, and finally “infinitesimal,” as we
descend to the length-scales characteristic of shorter and
shorter cycles.

(More precisely—to anticipate a key point—we reach
critical scale-lengths, below which it becomes impossible
to follow the trace of the “long cycle” within the “short
cycles,” unless we change our own axiomatic assump-
tions.)

We encounter this sort of thing all the time in astrono-
my. On the time-scale of the Earth’s daily rotation, the
yearly motion of the sun appears as a very small deviation
from a circular pathway. To the ancient observer, the
effect of that deviation becomes evident only after many
day-cycles. Similarly, recall the provocative illustration
commissioned by Lyndon LaRouche, for the seemingly
“infinitesimal” action of the approximately 25,700-year-
long equinoctial cycle (precession of the equinoxes) with-
in a one-second interval. (Figure 17.1)

The simplest sort of geometrical representation of
such infinitesimal long-cycle action, tends to understate
the problem: Suppose we did not know the existence or
identity of a given long cycle. How could we uncover it

by means of measurements made only on a much smaller
scale? Won’t the infinitesimally faint “signal” of the
longer cycle, be hopelessly lost amidst the turbulent
“noise” of the shorter cycles? Already in the case of
Piazzi’s observations, the true motion of Ceres was com-
pletely distorted by the effect of the Earth’s motion. What
would we do, if the cycle we were looking for were
mixed together with not one, but a huge array of other
cycles?

Here an unbridgeable chasm separates the method of
Gauss, from that of Laplace and his latter-day followers.
Just as Laplace ridiculed Gauss’s attempt to calculate the
orbit of Ceres from Piazzi’s observations, calling it a
waste of time, so Laplace’s successors, John Von Neu-
mann,  Norbert Wiener, and John Shannon, denied the
efficient existence of long cycles, and sought to degrade
them into mere “statistical correlations.”

The point is, we cannot solve the problem, as long as
we avoid the issue of axiomatic change, and tacitly
assume a simple commensurability between cycles which
is tantamount to “linearity in the small.”

The Issue of Method
Let’s glance at some examples, where this issue of method
arises in unavoidable fashion.

1. The paradoxes of any mechanistic theory of sound.
“Standard theory,” going back to Descartes, Euler,
Cauchy, et al., treats air as a homogenous, “elastic
medium,” within which sound propagates as longitu-
dinal waves of alternate compression and decompres-
sion of the medium. Descartes’ “homogeneous elastic
medium” is a fairy tale, of course. We know that the
behavior of air depends on the existence of certain elec-
tromagnetic micro-singularities, called molecules. We
can also be certain, that whatever sound is exactly, its
propagation depends in some way on the functional
activity of those molecules. At this point Boltzmann
introduced the baseless assumption, only superficially
different from that of Descartes and Euler, that the
molecules are inert “simple bodies”—interacting only
by elastic collisions in the manner of idealized tennis
balls.

Experimental investigations leave little doubt, that
the molecules in air are constantly in a state of a very
rapid, turbulent motion at hypersonic speeds, and that
events of rapid change of direction of motion take
place among them, which one might broadly qualify
with the term “collisions.” A single molecule will typi-
cally participate in hundreds of millions or more such
events each second. On the other hand, those “colli-
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sions” are anything but simple; they are vastly compli-
cated electromagnetic processes, whose nature Boltz-
mann conveniently chose to ignore.

Push the resulting, simplistic picture to the limits of
absurdity. Imagine observing a microscopic volume of
the air, one inhabited by only a few molecules, on a
time scale of billionths of a second. Where is the sound

wave? According to statistical method, the energy of
the sound wave passing through any tiny portion of air
is thousands, perhaps millions of times smaller than
that of the turbulent “thermal” motion in a corre-
sponding, undisturbed portion of air. What, then, is the
sound wave for an individual air molecule, travelling
at hypersonic speed, in the short time interval between
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successive collisions? Does the sound wave exist at all,
on that scale? According to Boltzmann, it does not: a
sound wave is nothing but a statistical correlation—a
mathematical ghost!

2. As implied, for example, by so-called photon effects,
light is not a simple wave. Its propagation (even in a
supposed “vacuum”) surely involves vast arrays of indi-
vidual events on a subatomic scale. But standard quan-
tum physics denies there is a strictly lawful relationship
between the propagation of a light “wave” and the
behavior of individual photons. Is “light” nothing but a
statistical correlation?

3. The characteristic of living processes is self-similar
conical-spiral action. But the functional activity of the
electromagnetic singularities, upon which all known
forms of life depend, is anything but simple and
“smooth” in the way naive imagination would tend to
misread the term, conical-spiral action. Going down to
the microscopic level of intense, abrupt “pulses” of
electromagnetic activity and millions of individual
chemical events each second, how do we locate that
which corresponds to the “long wave” characteristic,
we call “living”?

4. A competent physical economist must keep track of a
large array of cycles, subsumed within the overall
social-reproductive cycle and the long cycle of anti-
entropic growth of the per-capita potential population-
density of the human species: demographic cycles, bio-
logical and geophysical cycles of agricultural and relat-
ed production, production and consumption cycles of
consumer and capital goods market-baskets, industrial
and infrastructural investment/depreciation cycles
interacting with the cycles of technological attrition,
and so forth. (Figure 17.2) Where, within those cycles,
is the causal agent of real economic growth?

5. Look at this from a slightly different standpoint: In
the broad sweep of human history, we recognize a
continuity of cultural development, reflected in
orders-of-magnitude increases in the population
potential of the human species. But that development
is by definition a “discontinuum”: its very measure
and focus is the individual human life, the quantum of
the historical process. Nothing occurs “collectively,” as
a “social phenomenon” excreted by some “Zeitgeist.”
Nothing happens which is not the product of specific
actions of individual human beings (including “non-
actions”), actions bound up with the functions of the
individual personality. Yet on the scale of historical
“long cycles,” a human life is a short moment, with an
abrupt beginning and an abrupt end. If we would take
a microscope to history, so to speak, and examine the

hectic bustling and rushing around of an individual
during his brief, pulse-like interval of existence, would
we see the function which is responsible for the “long
wave” of human development? Were it not as an
“infinitesimal,” compared to the incessant hustling
and bustling of existence? And yet, it is that “infinites-
imal” which represents the most powerful force in the
Universe!

A Well-Tempered ‘Discontinuum’
What lesson can we draw from these examples? The case
of human society is the clincher: The efficient existence of
the long cycle within the shorter cycles, is located unique-
ly in the axiomatic characteristics of action in the small.

Thus, the relationship between short and long cycles
does not exist in the domain of naive sense-certainty; nor
is it capable of literal representation in formal mathe-
matics. To adduce axiomatic characteristics and shifts in
such characteristics, is the exclusive province of human
cognition! What characteristics necessarily apply to the
short cycles, by virtue of their participation in the com-
ing-into-being of a given long cycle? In this context, rec-
ognize the unique potential of the self-consciously cre-
ative individual, by deliberately changing the axioms of
his or her action, to shift the entire “orbit” of history for
hundreds or thousands of years to come! To command
the forces of the Universe, we need not know all the
details and instrumentalities of a given process; we have
only to address its essential axiomatic features.

Gauss’s solution for Ceres is coherent with this point
of view. His is not a simple construction, in the sense of
classroom Euclidean geometry. To solve the problem, we
had to focus on the significance of the fact, that there is
no simple commensurability or linear-deductive relation-
ship between

(i) the angular intervals formed by Piazzi’s observa-
tions from the Earth;

(ii) the corresponding three positions of Ceres in
space;

(iii) the orbital process generating the motion of
Ceres, and the “elements” of the orbit, taken as a com-
pleted entity;

(iv) the Keplerian harmonic ordering of the solar sys-
tem as a whole, subsuming a multitude of astronomical
cycles of incommensurable curvature.

We had to ask ourselves the question: What harmonic
relationship must underlie the array of intervals among
the observed positions of Ceres, by virtue of the fact, that
those apparent positions were generated by the combined
action of the Earth and Ceres (and, implicitly, the rest of
the solar system)? As Kepler emphasized, it is in the har-
monic, geometrical relationships—and not in nominal
scalar magnitudes per se, whether small or large—that
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Applying the Pythagorean Theorem to
the right triangle mfq, we find, that d 2 =
B2 + C2. Since length d from focus f to q
is equal to the semi-major axis A, and
the total length d + d = 2A, we have the
relationship between the semi-major
axis A, the semi-minor axis B, and the

distance C from the focus to the mid-
point m: 

A2 = B2 + C2,
or

C2 = A2 − B2

C = √
_
A
_
2
_
−
___

B
_
2 .
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the axiomatic features of physical action are reflected into
visual space.

The crucial feature, emerging ever more forcefully in
the course of our investigation, was expressed by the
coherence and at the same time the incommensurable
discrepancy, between the triangular areas of the discrete
observations on the one hand, and the orbital sectors on
the other. This is the same motif addressed by Gauss’s

earliest work on the arithmetic-geometric mean. What
shall we call it? A “well-tempered discontinuum”!

As an exercise, we invite the reader to apply the essence of
Gauss’s method concerning the relationship of the various
levels of becoming, to the completed conception of a Classi-
cal musical composition. For, you see, there is yet another
mountaintop!

—JT
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A and B are the semi-major and semi-
minor axes, and m is the midpoint, or
center, of the ellipse

The characteristic property of the
ellipse: The sum of the distance from an
arbitrary point q on the perimeter, to
the two foci f, f ′, is a constant: 

d + d′ = constant. 

To determine the value of the sum of
distances, consider the case, where q
approaches the point on the major axis
opposite f. At that point, we can see that
the total length d + d ′ will be equal to
the major axis of the ellipse:

d + d ′ = 2A.

APPENDIX

Harmonic
Relationships
In an Ellipse

(a) (b)

(c) (d) (e)

(f)
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(i) (j)

Another set of characteristic singulari-
ties: a point moving on the ellipse,
reaches its maximum distance (a) from
the focus f, at point a (called the “aphe-
lion”), and its minimum distance (b) at
the point p (called the “perihelion”).

The ellipse spans the intervals between
two characteristic sets of circles: the cir-
cles of radii A,B around the mid-point
of the ellipse, and the circles of radii a,b
around the focus f. What is the relation-
ship between A,B and a, b?

a + b = major axis of ellipse

= 2A

a + b
A = _____ .

2
Also, from the diagram,

C = a − A

a + b
= a − _____

2
a − b= _____ .

From figure (f), we have the relation-
ship

A2= B2 + C2  .

From this, it follows that

B2= A2 − C2

a + b a − b= x_____c2
− x_____c2

2 2

a
2 + b2 + 2ab= x____________c4

a
2 + b2 − 2ab− x____________c4

= ab  !
___

B= √ab   .

___
A = (a+b) / 2 and B = √ab are known as the arithmetic and geometric
means of lengths a and b. The combination of the two, inherent in the geometry of
the ellipse, plays a key role in Gauss’s founding of a theory of elliptic and
hypergeometric functions, based on his concept of what is called the “arithmetic-
geometric mean.”
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The intimate relationship to the musical
system can be seen, for example, if we
interpret lengths as signifying frequen-
cies (or pitches), and consider the case,
where a = 2b (length a corresponds to
a pitch one octave higher than b). If b is
“middle C,’’ then the pitches corre-
sponding to the various elliptical singu-
larities will be as labelled in the figure.

The interval F-F# is the key singularity
of the musical system.
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(k)

Still another key singularity, already
presented in the text, is the “orbital
parameter,” which is the length of the
perpendicular qq′ to the major axis at
the focus f. The value Gauss most fre-
quently works with in his calculations,
is the “half-parameter” qf, correspond-
ing to the radius in the case of a circular
orbit.

To calculate the relationship between
the half-parameter (labelled “D”) and
the semi-axes A,B, one way to proceed
is as follows: From the characteristic of
generation of the ellipse,

E + D = 2A (major axis). (A1)

Apply the Pythagorean Theorem to
the right triangle fqf′:

E2 − D2 = (2C)2 ,  or

E2 − D2 = 4C2 .  (A2)

On the other hand, by factoring, we
have

E2 − D2 = (E − D) (E + D)

= (E − D) · 2A (A3)

[by Equation (A1)].
From Equations (A2) and (A3), we

have 

4C2 2C2
E − D = ____ = ____  . (A4)

2A A

Subtracting Equation (A4) from
Equation (A1), we find

2C2
2D = 2A − ____

A

A2 −C2 B2
D = ______ = ___  .

A A

This result becomes much more
intelligible in terms of conical projec-
tions.

Expressed in terms of the aphelion
and perihelion distances, we have

B2 abD = ___ = ________  
A (a + b) / 2

2ab 2= _____ = _________  .
a + b (1/a) + (1/b)

The latter value is known as the har-
monic mean of a and b.

The Orbital Parameter
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In summary, the semi-major axis,
semi-minor axis, and half-parameter
of an orbit, correspond to the
arithmetic, geometric, and
harmonic means of the aphelion
and perihelion distances. These three
means played a central role in the
geometry, music, architecture, art,
and natural science of Classical
Greece
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The Ellipse as a Conical Projection
The underlying harmonic relationships in an ellipse become more intelligible, when we conceive the
ellipse as a kind of “shadow” or projection from a higher, conical geometry. The implications of this are
discussed in Chapter 12; here, we explore only the “bare bones” of the relevant geometrical construction.

Given a horizontal plane and a point f
on that plane, erect a vertical axis at f
and construct a vertical-axis cone hav-
ing its apex at f and its apex angle equal
to 90°.

Note a crucial feature of the relation-
ship between cone and horizontal plane:
for any point q in the plane, the distance
d from f to q, is equal to the “height” h
of the point Q lying perpendicularly
above q on the cone. 

Now, cut the cone with a plane, gener-
ating a conic section. For the present
discussion, consider the case, where the
cutting plane makes an angle of more
than 45° with the vertical axis. In this
case, the conic section will be an ellipse.
Now, project that curve vertically
downward to the horizontal plane. The
result, as we shall verify in a moment, is
an ellipse having f as a focus.

To explore the relationship so generat-
ed, examine the above figure as project-
ed onto a plane passing though the ver-
tical axis and the major axes of the two
ellipses. (That plane makes right angles
with both the cutting plane and the
horizontal plane.)

With a bit of thought, we can see
that the segment f V is equal to the seg-
ment D [in figure (l)], which defines the
half-parameter of the projected ellipse.
(Indeed, the endpoint q of the segment
D on the ellipse, coincides with the posi-
tion of f when the ellipse is viewed
“edge-on” perpendicular to its major
axis; the point Q, on the cone above q,
coincides with V in the projection, and

its height, which is equal to D, coincides
with f V.) Those skillful in geometry
can easily determine the length f V in
terms of a and b from the diagram.

The result is f V = 2ab / (a+b), con-
firming the expression for the half-
parameter which we found by another
method above in (l).

V

b

b a

a

p af

cutting plane
(seen 'edge-on')

horizontal plane
(seen 'edge-on')



88

(r)

Looking at the double-conical con-
struction in the “edge-on” view as
before, we can now see why the points
f,f ′, corresponding to the apex-points
of the cones, coincide with the foci of
the ellipse. Let q represent an arbitrary
point on the perimeter of the projected
ellipse, let Q represent the correspond-
ing point on the conical section. Then,
by virtue of the symmetry of the con-
struction and the relationship between
“heights” and distances to the points f
and f ′, Qq and Qq′ are equivalent,
respectively, to the true distances from
q to f and f ′ (i.e., the real distance in
the plane of the projected ellipse, not
those in the “edge-on” view). Since the
distance between the two horizontal

planes in the diagram is constant, Qq
+ Qq′ is constant, and therefore so is
the sum of the distance qf and qf ′. —Jonathan Tennenbaum

f f′ m

(q)

Double-conical projection. The ellipse
formed by the original plane-cut of the
cone, can also be realized as the intersec-
tion of that cone with a second cone,
congruent to the first, but with the
opposite orientation, and whose axis is a
vertical line passing through the point f ′
lying symmetrically across the midpoint
m of the projected ellipse from f.

b

b

b
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Representatives from twenty
nations, including signifi-

cant Asian media outlets, plus
policy makers and political
activists from the United States,
jammed into a meeting room in
Washington, D.C. March 18, for
a major presentation by econo-
mist and statesman Lyndon H.
LaRouche, Jr., on the prospects
for implementing a New Bret-
ton Woods System. LaRouche
led the audience through a two-
hour lesson in history, econom-
ics, and politics, which
concluded with the fol-
lowing assessment.

We have two alter-
natives before us. If we
stick with the current
I.M.F. policy, we are
headed toward a New
Dark Age. If we cooper-
ate with Asia to build a
new just world econom-
ic order based on devel-
opment, and bring jus-
tice to Africa, the
Twenty-first century
can be the realization of
the universal principle
of building a society
based on man’s being
made in the image of
God. The decision is up
to us in 1998—whether
we take the leadership
to do what appears
unthinkable under cur-
rent conditions, or, by minimizing risks,
maximize the misery of the human race
for generations to come.

LaRouche began with a discussion of
the financial crisis, as it is beginning to
spread from Asia to Europe, and then,
inevitably, on to the United States. What
is being implemented is a Versailles-
style policy that is literally destroying
the nations of Asia.

Under these conditions, LaRouche
urged the then-upcoming meeting of the
Group of 22 nations, convened by U.S.

Treasury Secretary Rubin on April 16, to
agree to deal with three crucial topics:

First, the nations, led by the U.S., must
acknowledge the global and systemic
nature of the crisis, and realize that the
abandonment of Bretton Woods mea-
sures of stability actually caused the crisis.

Second, the nations must agree on a
radical reorganization of the monetary
system, effectively carrying out a bank-
ruptcy reorganization, and re-imposing
fixed exchange rates, forms of capital
controls, necessary protectionist mea-

sures, and the outlawing of
markets that speculate against
currencies.

Third, the representatives
must understand that the world
economy is currently operating
at negative growth levels, below
the per capita physical output
levels required to support the
world’s population, and thus
they must agree that a forced-
draft physical economic recov-

ery, analogous to that
carried out by President
Franklin D. Roosevelt
in the U.S., must be
carried out on a global
scale.

The Question of
Leadership

LaRouche moved to
the question of leader-
ship, contrasting that of
FDR, to the political
norm today, and locat-
ing FDR’s genius in the
tradition of the United
States’s unique com-
mitment to a constitu-
tional principle of gov-
erning according to
man’s being made in
the image of God.

The obvious objec-
tion to doing what
needs to be done, La-

Rouche said, is the argument that a sud-
den change in policy is impossible. If
that argument is right, we’re headed
toward a New Dark Age. LaRouche
described the models of leadership given
by the German General von Schlieffen,
and the French scientist-general Lazare
Carnot. These men knew that you had
to take risks (although they were well
thought-out) to win, but President Clin-
ton’s plan of minimizing risk, to achieve
consensus, will maximize defeat.

There is already a shift away from

89

New Dark Age, or 
21st-Century Renaissance?

NEW S

Schiller Institute campaigns for a “New Bretton Woods System” at G-22
Finance Ministers meeting, Washington, D.C., April 16, 1998.

LaRouche Assesses ‘New Bretton Woods’ at D.C. Meet
Lyndon H. LaRouche, Jr.

E
IR

N
S

/S
tu

ar
tL

ew
is

E
IR

N
S

/S
tu

ar
tL

ew
is



the post-industrial I.M.F. paradigm,
LaRouche pointed out, and if President
Clinton showed leadership, he could get
support. We see the shift in the Asian
nations’ rejection of the I.M.F., and in a
turn by the U.S. population toward
bread-and-butter issues (i.e., perfor-
mance orientation). The I.M.F. is mur-
dering the nations of South Asia, and
this truth must be faced.

LaRouche then pointed to two exam-
ples of the institutional approach to
dealing with this crisis. He cited Roose-
velt’s Economic Stabilization Act policy,
and the example of the Listian Wilhelm
Lautenbach, who outlined the principles
of a recovery program for Germany
which could have stopped Hitler. Above
all, Lautenbach said, you can not cut
production, and credit must be mobi-
lized selectively to save the productive
economy, not the private financial sys-
tem.

The problem, LaRouche empha-
sized, is that Americans have lost their
institutional memory of what the U.S.
represents. This he returned to later, in
elaborating the model which Abraham
Lincoln and his economist Henry Carey
established in the 1861-1876 period, and
which was copied by Japan, Germany,
and many other nations.

It is important to understand the dif-
ference between previous cyclical eco-
nomic crises, and the current systemic

crisis, LaRouche said. The cyclical crises
were the result of the conflict between
social forces of national economy, who
support industrial progress, and the par-
asitical financial oligarchy. When the
parasite wreaked too much damage,
depressions would result. But, in the
post-1962 period, we have had the con-
certed destruction of the national econo-
my forces, as the utopians moved to
destroy the nation-state. Unless we
destroy the post-industrial paradigm,
there is no way to reassert policies of
national growth.

LaRouche presented ten colorful ani-
mated graphics showing the physical-
economic concomitants of the post-
industrial paradigm, which contrasted
developments of 1946-1966, to those of
1966 to the present. What was made
clear, is that the decline in physical-

goods production has created the prob-
lems in increased taxation, and budget
deficits. He concluded this section by
illustrating the unpayable derivatives
bubble, and elaborating how such oblig-
ations, estimated at $140 trillion, will
have to be written off, in a financial
reorganization.

The touchstone of policy, he empha-
sized, is to use credit to keep people alive,
and, while so doing, build a recovery.

The Machine-Tool Principle

LaRouche concluded his speech with a
discussion of the “machine-tool principle,”
which is indispensable to a recovery pro-
gram. The machine-tool principle makes
scientific and technological progress possi-
ble, he stressed, and such progress is the
secret of a modern economy.

The development of the machine-tool
design industry, however, requires gov-

ernment inter-
vention, both to
fund the indus-
try, and then to
make sure it gets
into the produc-
tion process. La-
Rouche concrete-
ly described how
it was in the
strategic econo-
mic interest of
the U.S. and
Japan to provide
access to the
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U.S. regional conferences organize for ‘New Bretton Woods System.’
Schiller Institute spokesmen Lawrence Freeman (above) and Harley
Schlanger (right) address meetings in Norfolk, Va. and Houston, Tx. 

EIR U.S. editor Debra Freeman (left) and
New Federalist editor-in-chief Nancy
Spannaus (below) give introductory
remarks at the March 18 seminar.
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On April 2, Lyndon LaRouche and
Helga Zepp LaRouche addressed a

meeting held at Rome’s Hotel Na-
zionale, a few steps from the Italian Par-
liament. Their presentations were
attended by Members of Parliament
from both houses, economists, journal-
ists, and diplomats.

Introducing the speakers, Paolo Rai-
mondi, President of the Italian Solidari-

ty Movement, reminded the audience
that one year ago, at a conference in
Rome, the LaRouches had warned of
the financial crisis, and had presented
the alternative to it, in the shape of the
Eurasian Land-Bridge program for
massive infrastructure development.

As LaRouche explained at the outset
of his remarks, “Some years ago, I pre-
sented to various places, including the
government of the United States, a pro-
posal for a plan of action in response to a
crisis of the type we experienced first
since last October, and now we will
experience with much greater force dur-
ing the second quarter of 1998.

“I propose,” LaRouche continued,
“that we base our actions on an histori-
cal precedent, that we take the 1950’s as
a period in which the postwar recon-
struction efforts had demonstrated that
they were going to be successful, which
is under the Bretton Woods arrange-
ment. It wasn’t the Bretton Woods for-
mula that did it alone; it was that the
Bretton Woods formula was adapted, to
provide a climate favorable to plans for
successful physical reconstruction of
war-torn and other economies.”

Which was more successful—the
postwar Bretton Woods system, or what
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Only a few days after the April 16
monetary conference of the

Group of 22 in Washington—at
which conference the moral and poli-
cy bankruptcy of the I.M.F. was
widely acknowledged, but decisive
action was not taken—the Schiller
Institute organized seminars in War-
saw, to bring to the Polish capital and
Polish government the discussion of a
“New Bretton Woods” reorganiza-
tion of the world financial system.

On April 21, some one hundred
people attended the New Bretton

Woods seminar in the Polytechnicum
Warschawski. Present were repre-
sentatives of four of Poland’s Min-
istries: the Ministries of Economic
Affairs; Transportion; Agriculture;
and Education, Science, and
Research. Also attending were repre-
sentatives from Polish academic insti-
tutions and media, and diplomats
from several Eastern European and
Asian nations.

Elisabeth Hellenbroich of the
German Schiller Institute outlined
the strategic world situation and

elaborated Lyndon LaRouche’s pro-
posal for scrapping the I.M.F., and
reorganizing the global financial sys-
tem in a fashion modelled on the best
aspects of the postwar Bretton
Woods system. The next day, the
Schiller Institute representatives
addressed ninety students at the
Warsaw Catholic Academy. A meet-
ing also took place April 22, in the
Polish Parliament, the Sejm, attend-
ed by nine members of the Parlia-
ment, along with other financial/eco-
nomic experts.

‘New Bretton Woods’ Seminars Held in Warsaw

LaRouches Mobilize in Italy 
For a ‘New Bretton Woods’

machine-tool industry (including the
ability to develop their own), to China,
India, and the rest of the South Asia. We
need a global partnership, including
Germany and Russia, and others, to
develop the machine-tool capacity in this
most populous, Asian region of the
world.

LaRouche then described how the
Eurasian Land-Bridge, a concept he
helped develop, would provide the pro-
jects that would revolutionize the
economies of Asia and Africa, and cre-
ate projects equivalent to a mobilization
for general warfare, but for develop-
ment instead.

European organizing for a ‘New Bretton Woods System.’ Helga Zepp LaRouche
addresses seminar in Stuttgart, Germany, March 20, 1998.

E
IR

N
S

/C
hr

is
to

ph
er

Le
w

is



92

Schiller Institute Performs
Bach’s ‘St. John Passion’

Conductor Anno Hellenbroich directs a rehearsal at St. Margaretha Catholic Church,
Ampfing, Germany.

we have today? “Take the system of the
1950’s, and the system of the 1970’s and
1980’s,” LaRouche suggested. “If these
were automobiles, which would you
buy?”

A Moral System

The most fundamental fact about the
proposed new monetary system is that it
is a moral system, LaRouche empha-
sized. “In other words, the new mone-
tary system is not simply a set of rules to
play football by, but actually has to be a
mission-oriented system, which has an
implicit purpose. The purpose is to
bring a system of justice to this planet,
especially economic and social justice,
through the mobilization of the
machine-tool-capable nations, to assist
in the development, the internal devel-
opment of the nations of Asia and
Africa.”

Helga Zepp LaRouche, chairman of
the Schiller Institute, addressed the
meeting after her husband. She
explained that internationally in the last
year, some five hundred Members of
Parliament, three former Presidents,
and thousands of Civil Rights leaders
have endorsed the call to President Clin-
ton to convene a New Bretton Woods
conference, which was launched by
Zepp LaRouche and Ukrainian econo-
mist and Member of Parliament Dr.
Natalya Vitrenko.

Many of these endorsements came
from Europe, including many members
of the Italian Parliament, Zepp
LaRouche noted. The increasing sup-
port in Europe for LaRouche’s proposals
is due to the fact that since last Novem-
ber, the “Asia crisis” has increasingly
been seen, not as an “Asian,” but as a
global, financial crisis, and its effects, in
terms of decreased exports and
increased unemployment, have led to
social unrest in most European coun-
tries. This is leading to “new political
realignments,” including in Italy.

The LaRouches’ visit in Rome con-
cluded with more meetings, including
one on Africa, with priests and students
from the Great Lakes region of Africa
(including Burundi, Rwanda, and
Congo-Zaire), and another on scientific
method, with ten Italian scientists who
are engaged in work on cold fusion.

During Holy Week, prior to Easter,
the chorus and orchestra of the

Schiller Institute in Germany performed
excerpts from J.S. Bach’s “St. John Pas-
sion” at the St. Margaretha Catholic
Church in Ampfing, a small town in
Bavaria. Approximately three hundred
people attended.

Father Haimerl welcomed the musi-
cians and the audience, and stressed
that, with Bach’s music, the Holy Week,
a time of reflection about the death of
Christ, and man’s role in the succession
of Christ, is most appropriately opened.

The performance started with the
magnificent opening chorus “Herr
unser Herrscher (Lord, our Master).”
Next was performed the choral “Dein
Will gescheh (Thy will must all Cre-
ation do).” This was followed by the
“Von den Stricken meiner Sünden
(From the shackles of my vices),” the
aria “Ich folge Dir gleichfalls (I follow
Thee also),” and the choral “Petrus, der
nicht denkt zurück (Peter, while his
conscience slept).”

The music continued, with the
chorales, “Christus, der uns selig macht
(Christ, who knew no sin or wrong)”

and “Ach grosser Koenig (Ah, mighty
King).” These were followed by the
Arioso, “Betrachte, meine Seel (Bethink
thee, o my soul).” A smaller chorus of
twenty-five singers then sang two poly-
phonic settings: “Kreuzige! (Crucify!)”
and “Lasset uns den nicht zerteilen (Let
us rend not nor divide it).” Between
these two, the full chorus sang the
choral, “In meines Herzens Grunde
(Within my heart’s recesses).” Next
came the aria “Mein teurer Heiland (O
Thou my Saviour).” Then, the conclud-
ing pieces, which represent the final res-
olution to the ideas outlined in the open-
ing chorus, were performed, again by
the full chorus: “Ruht wohl, ihr heiligen
Gebeine (Rest well, beloved, sweetly
sleeping)” and the choral “Ach Herr,
lass dein lieb Engelein (Ah Lord, when
comes that final day).” These two parts
express both the mourning for the death
of Christ, and the triumph over death
through eternal life.

At the end of the performance,
Father Haimerl thanked the musicians
for having “lighted a lamp, that will
burn for some time” in those who
attended this performance.
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On the morning of March 23,
1998, international news dis-
patches from Moscow featured

the announcement of an ongoing purge
of the Russian government of Prime
Minister Viktor Chernomyrdin, ordered
by President Boris Yeltsin. The princi-
pal details of the changes, including
names of those key figures who, thus
far, were dumped, or remain, or have
been newly promoted, are documented
in the accompanying report [“The Ides
of March: Russia Crisis Breaks,” EIR,
April 3, 1998]. Our task here, is to pro-
vide the reader an appropriate insight
into the strategic circumstances in which
this coup from above has occurred.

The timing of the coup was obvious.
The facts had been summarized by Rus-
sia’s prominent leading younger econo-
mist, Dr. Sergei Glazyev, in a piece
written at the beginning of this year.1 At
the time, last Autumn, the global sys-
temic financial-monetary crisis was tar-
getting Korea, Japan, and Indonesia,
Russia had postponed a similar collapse
by an hysterically inflationary bail-out,
through short-term international
financing at loan-shark interest-rates.

Come March, as the end of the first
quarter of calendar year 1998
approached, the financial, economic,
and social pressures of this bail-out
financing terrified Russia’s leading
political circles. In such circumstances,
whatever might be likely to occur under
such circumstances, were likely to begin
building up now, echoing the scenario
which began during October of 1997.

As in the case of the man who came
down suddenly with a severe case of
influenza, the infection with such poten-
tial developments as this coup from
above, was present. However, the
patient’s disposition to come down with
a severe attack of this infection, was a
result of his general circumstances of
stress, and the weakened condition of
his immune system.

Historical Precedents

Coup in Russia? The historically literate
mind recalls images of the famous 1905
and 1917 revolutions. The first of these
was triggered by the combination of a
London-orchestrated, international
financial crisis of 1905-1907, and the
impact of the Russo-Japanese War. The
second, was the reflection of economic
disaster, combined with large, useless
losses of peasant soldiers in the foolish
continuation of Russia’s hopeless war
against Germany. In both cases, the con-
fluence of a social and economic crisis,

intersected a general loss of confidence
in the potential usefulness of a discredit-
ed government. Given, a spectrum of
previously established nuclei of revolu-
tionary political institutions, and a seem-
ingly endless worsening of combined
social, economic, and political crises
under the existing government, mass-
based revolutionary ferment was likely.

There are analogous leading features
in Russia’s situation now.

That historically literate mind, if it
had studied the discussions which occu-
pied the minds of both the various revo-
lutionary organizations, and their
national and foreign opponents, from
those periods, would see those Russian
revolutions somewhat as the leading
European revolutionaries of 1917-1923
saw them, as echoes of the revolutionary
developments in the France of 1789-
1794. This was the view of revolution
which had been popularized by Karl
Marx and others during the middle
decades of the Nineteenth century. This
was the view commonplace among the
collaborators and opponents of Karl
Kautsky within the leading social-
democratic and Bolshevik circles of the
pre-1914 debates. These are more or less
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COMMENTARY

Russia: A Coup from Above
by Lyndon H. LaRouche, Jr.
March 24, 1998

_________________________________

This article first appeared in Executive
Intelligence Review (EIR), April 3, 1998
(Vol. 25, No. 14).

The new crisis whose onset now grips Russia, and, soon, much of the rest of the planet, must
be welcomed, gratefully, as the needed crisis which prompts us to do the good we were

unlikely to attempt otherwise. We see this crisis as the opportunity to defeat, 
to free us from that religious quality of monetarist fervor which is 

presently the greatest threat to civilization.

__________

1. Sergei Glazyev, “Key Measures for a
Transition to Economic Growth in Rus-
sia,” Executive Intelligence Review, March
27, 1998 (Vol. 25, No. 13).



crisis in Russia
today. It is cru-
cial, that Presi-
dent Clinton
and his policy
advisers (among
others) recog-
nize, that what-
ever comes out
of the months
i m m e d i a t e l y
before us, it will
be a revolution-
ary change of
some kind. At
this moment,
the prospect of a
revolut ionary
change—of one
sort, or anoth-
er—inside Rus-
sia, is an agenda-
item of high pri-
ority.

Russia’s Legacy from the 
French Revolution

The fact which makes the present global
revolutionary situation so extraordinari-
ly dangerous, is that the majority of the
leading circles of government and
finance, around the world, are presently,
clinically insane. As one leading banker
described the situation, the majority
among those circles which will decide
the outcome of the mid-April monetary
conferences in Washington, D.C., is
gripped by a devotion to the lunacy of
their existing financial and related poli-
cies of “globalization” and “liberaliza-
tion,” which can be fairly described only
as a passion of extreme, blind religious
fervor, an obsessive quality of religious
delusion: in this case, the pagan worship
of Fortuna. The currently prevailing
insanity among the neo-conservatives of
finance and politics, is an inquisitional
quality of lunatic religious fervor, brim-
ming with bloody-handed bigotry.

Unless the unlikely occurs, and the
U.S.A. pushes through the kind of radi-

cal “new Bretton Woods” reforms I
have identified, the way in which the
bankers and governments of the world
will react to the global financial and
monetary crises of 1998’s second quar-
ter, will be the worst disaster yet.
Already, the financial markets of Tokyo
and New York City, are propped up
only by the most lunatic form of hyper-
inflationary printing-press-money out-
flow since the Weimar hyperinflation of
1921-1923. The result will come much
quicker, and with far greater force than
during 1921-1923. If my proposals are
not adopted during the relevant April
meetings, the second half of 1998 will
experience the end of the present inter-
national financial, monetary, and bank-
ing system, the worst crisis of this planet
in modern history.

After such an orgy of futile, but
axiomatically hyperinflationary attempts
at global “bail-out” of banks, during the
second quarter of 1998, the game ends.
After the immediate results of that orgy
of “religious fervor” during the second

94

May 1919: 
Vladimir Lenin,

Red Square.

N
ov

os
ti/

C
or

bi
s-

B
et

tm
an

n

the terms of reference which automati-
cally come to the minds of historically
literate circles among Russia policy-
shapers since the successive upheavals of
1989-1993.

We shall therefore turn, briefly, but
necessarily, to identifying those present-
ly crucial historical issues of the 1789-
1794 French Revolution, which are
indispensable for an effective political-
strategic understanding of the revolu-
tionary crisis presently gripping not only
Russia, but the world as a whole,
throughout the remainder of 1998.

The legacies of the earlier Russian
revolutions, and of the institutions to
which they led, are prominent, and
more or less dominant, among the cul-
tural influences from the past, which
shape the actions and reactions of the
principal players on the Russian stage
today.

Those sundry revolutionaries of
those past periods, from Marx through
the social-democrats and Bolsheviks of
1917-1923, were victims of fundamental
errors of assumption respecting the
nature of man, history, and society.
Those are not minor errors, but
axiomatic errors, errors otherwise
described as “crucial,” or fundamental.
Nonetheless, despite those errors, as
Rosa Luxemburg described her old fac-
tional opponents from Russia, Lenin
and Trotsky, “they dared.” Although
each of them erred greatly in identifying
the underlying principles of those his-
torical transformations, they are not to
be regarded as anything less than highly
qualified professional revolutionaries,
professional makers of history. From the
evidence of their deeds, only an idiot
would deny that these revolutionary
leaders obviously understood something.
The crucial errors in their understand-
ing, we must reject; but they were not
half as misguided, or ignorant, as those
foolish statesmen, who approach the
present global situation with the delu-
sion that the immediate weeks and
months ahead are not a revolutionary
interval of history, in the strictest sense
of that term.

This is most clearly relevant in face
of the presently onrushing revolutionary



quarter of this year, the next change will
be a “thermonuclear” chain-reaction of
reversed financial leverage within the
world’s system of casino side-bets, what
John Hoefle of EIR’s economics desk
has described as a “three-hundred-
pound flea” sucking upon a “forty-
pound dog,” what is otherwise known
as the looniest financial bubble in histo-
ry, the hot-air bubble of “hedge funds”
and financial “derivatives.”

The present, if temporary hegemony
of the religious fervor among most of
such lunatic “religious” bigots control-
ling international financial and related
policies today, is the crucial factor which
makes the present situation, inside and
outside Russia, a revolutionary situation
today.

That setting for oncoming short-
term, global developments, is the con-
text in which Russia’s recent coup from
above must be situated. Therefore, a
summary of the relevant features of the
French Revolution’s legacy of myths, is
indispensable for understanding both
the internal situation, and international
setting of Russia-in-crisis now. Look at
the most crucial French events of 1789-
1794 from this vantage-point. There are
crucial features of that history which
should remind us of the recent history of
Russia in particular, and most of this
planet in general.

Despite France’s earlier loss of the
power to independently challenge the
British monarchy’s growing maritime
power, pre-1789 France was the most
advanced nation of the world in science
and technology, and the nation with the
most powerful economy. Then, toward
the close of the U.S. War of Indepen-
dence, the clouds darkened over conti-

nental Europe. The opening scene in the
ensuing tragedy of King Louis XVI’s
France, began during the 1783 phase of
negotiations of the peace between the
United States and its ally France, on the
one side, and the British monarchy, on
the other. The seeds of France’s destruc-
tion were sown in the setting provided by
wily Lord Shelburne’s brief occupation
of the post of Britain’s Prime Minister.

Out of these peace negotiations, came
a curious cohabitation between the
Physiocrats associated with A.-R. Tur-
got, on the one side, and the British East
India Company’s Shelburne and Jeremy
Bentham, on the other. The harpoon,
designed by Shelburne, which destroyed
the French whale, was France’s submis-
sion to the British demand for a “free
trade” agreement.2

To enforce that agreement, France
was guided by its Finance Minister,
Jacques Necker, a notorious asset of
British intelligence, a Swiss banker from
Lausanne, otherwise known as the
father of the infamous Madame de Staël,
she a bimbo fit to strut on Kenneth 
Starr’s chorus line.3 Necker was very
successful; within several years, he had

bankrupted France! The superimposi-
tion of “free trade” was used, by Necker
et al., to turn the French war-debt into
an instrument of destruction of France’s
public finance. The network of agents
built up by Venice’s Paris-based super-
spy, Abbé Antonio Conti, was already
awaiting the opportunity to strike
France from within. The French Revo-
lution was soon on.

Inside France, Necker had interest-
ing allies. Turgot aside, the most promi-
nent was a British agent, a perennial
enemy of Benjamin Franklin among
freemasonic circles, the Duke of Orléans
otherwise known as “Philippe Egalité.”
It was Orléans who organized and
directed the mob which led the assault
on that then-virtually emptied prison
known as the Bastille; this assault was
staged by Orléans as an election-cam-
paign stunt on behalf of Orléans’
demand, that King Louis XVI appoint
Jacques Necker as France’s Prime Min-
ister, the same Necker who, as Finance
Minister, had just previously bankrupt-
ed France, a lunacy comparable to
appointing Kenneth Starr, or Speaker
Newt Gingrich, White House Chief of
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__________

2. Lord Shelburne, the key figure of the
British East India Company and of Bar-
ings Bank, had engaged Adam Smith,
beginning 1763, to devise a scheme for
destroying both the economy of France
and the independence of the young enemy
then growing up in the English colonies
in North America. Smith’s 1776 anti-
American tract, his Wealth of Nations,
largely a plagiaristic copying of the work
of Turgot, was the most notable conse-
quence of his engagement by Shelburne.
Banker Shelburne is the principal author
of the notions of “free trade” popularized 

by his protégés Adam Smith and Jeremy
Bentham. His role, as Prime Minister, in
negotiating the November 1782 secret
treaty of peace with the United States, was
to further Necker’s use of “free trade” as
the ruse for bankrupting France. That
lesson from history applies to the situation
in Russia and numerous other economies
ruined by “liberal economics” today.

3. The relations between the family of Neck-
er and British intelligence is among the
more disgusting footnotes of French and
Swiss history from the late Eighteenth
century.

The revolutionaries from Marx through the Bolsheviks, were victims of fundamental
errors of assumption respecting the nature of man, history, and society. Nonetheless,
although Lenin and Trotsky erred greatly, they are not to be regarded as anything less
than highly qualified  professional revolutionaries, professional makers of history. They
were not half as misguided, or ignorant, as those foolish statesmen, who approach the
present global situation with the delusion that the immediate weeks and months ahead are
not a revolutionary interval of history, in the strictest sense of that term.



Staff for President Bill Clinton. The
same Orléans, a short time later, orga-
nized and armed a mob which he led to
the Palace of Versailles, to capture and
imprison his cousin the King.

As a result of such developments, the
friends of the United States were purged,
sent to prison, or even guillotined.4

British agents among the leaders of the
Jacobin Terror, such as Maximilien
Robespierre, Georges Danton, and the
London-trained Swiss mass-murderer,
Jean-Paul Marat, took charge. Soon, the
fanatical romantic Paul Barras grabbed
power, and brought his protégé,
Napoleon Bonaparte, into the latter’s role
in misshaping the law and other institu-
tions of France, transforming France into
a caricature of that “whore of Babylon”
known as the Roman Empire, replete
with “Sun King” Emperor Bonaparte
consecrating himself as “Pontifex Max-
imus” of the state religion.

There are two most crucial, distinct,

but interdependent follies of Marx and
the socialists generally, errors which
were crucial in misshaping the outcome
of the Russian revolutions of 1905 and
1917. It is urgent, given the presently
acute, revolutionary and pre-revolution-
ary situations now developing rapidly
inside Russia and many other parts of
world, that those errors not be commit-
ted yet once again.

The first error, is the assumption of
“proletarianism,” itself a romantic con-
ception traced to a wild misrepresenta-
tion of the nature of the social structure
of the Roman Empire. That is the
assumption, typified by the pro-satanic
doctrine of Bernard Mandeville’s Fable
of the Bees, that the anarchic, intrinsical-
ly entropic expression of individual lust,
is both the “natural” driving-force of
social processes, and that this kinematic
random walk among anarchically con-
tending, irrational impulses, functions as
a kind of secretion, whose outcome is
presumed to be appropriate ruling
ideas.5 This error underlies that kind of
deluded faith in the non-existent, but
supposed cure-all properties of “democ-
racy.” This is the same notion of

“democracy,” as presently advocated by
the U.S. National Endowment for
Democracy, which had tended, in each
relevant, known case since ancient
Greece, to transform gravely troubled
“democratic” societies into the most
awful tyrannies.

The second error, is the cult of
empiricism. This is largely the com-
bined outgrowth of Venice’s Sixteenth-
century reintroduction of Byzantine
Aristoteleanism into the western Europe
of the Latin Rite, and the subsequent
introduction of Paolo Sarpi’s Ockhamite
dogma of empiricism. This is the same
cult of materialism which pervades
every variety of political-economy wide-
ly taught in universities today.

As the relevant evidence and argu-
ment is presented in earlier editions of
EIR, and in other locations, the errors
just identified have the following practi-
cal implication both for the way in which
Marxists and empiricists generally mis-
perceive history, and also in causing the
worst among those follies of shaping of
economic policy and practice, which
commonly cause the worst economic and
related crises. The needed corrections
are, summarily, the following.

First, the possibility of “more,” relies
absolutely upon the specific, cognitive
ability, existing only among individuals
of the human species, to generate, assim-
ilate, and employ those discoveries of
physical principle, and related types of
ideas, by means of which the human
species’ per-capita power over the physi-
cal universe, is increased.

The ability to transmit validated dis-
coveries of physical and other principle,

__________

5. The Fable of the Bees: Private Vices, Public
Virtues (1734) (London: Reprint, 1934).
This work is, according to the late
Friedrich von Hayek, the “Bible” of the
Mont Pelerin Society. It is also the kernel
of Adam Smith’s argument in his 1759
The Theory of the Moral Sentiments, and
the argument Smith uses, in his 1776
Wealth of Nations, for the adoption of
François Quesnay’s laissez-faire as Smith’s
notion that “free trade” is the art of the
“Invisible Hand.”

__________

4. Exemplary are the case of Tom Paine and
the Marquis de Lafayette. Lafayette’s case
was dramatized by Ludwig van
Beethoven’s opera Fidelio, in which the
villain Pizzaro (Lord Shelburne’s puppet,
English Prime Minister William Pitt the
Younger) imprisons Florestan Lafayette in
a dungeon (actually, the Austrian imperial
dungeon at Olmütz). Lafayette was
imprisoned, in 1792, on orders from Lon-
don, by the ultra-reactionary predecessor
of Metternich, suspect in the death of
Wolfgang Mozart, Chancellor Wenzel
von Kaunitz, and remained endungeoned
until he was freed, in 1797, largely
through the intercessions of his wife,
Leonore (Adrienne Lafayette).

There are two crucial follies, which were crucial in misshaping the outcome of the
Russian revolutions of 1905 and 1917. The first error, is the assumption of ‘proletarianism,’

the assumption that the anarchic, intrinsically entropic expression of individual lust, is
both the ‘natural’ driving-force of social processes, and that this random walk among

irrational impulses, functions as a kind of secretion, whose outcome is presumed to be
appropriate ruling ideas. The second error is the cult of empiricism, the same cult of

materialism which pervades every variety of political-economy widely taught 
in universities today.
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from one mind to another, requires the
development of culture, in the same
sense that we require progress in
increasing the number of validated
known physical principles and their
technological derivatives. Hence, the
relationship between the human indi-
vidual and economy is total. For exam-
ple, “economic man” does not exist, nor
is there any purely “economic” doctrine
which accounts for the direction of
developments within actual economies.
Every aspect of human activity, bearing
upon the generation, transmission, and
assimilation of validatable kinds of ideas
of physical principle, social relations,
and the nature of the human cognitive
functions of discovery of such principles,
acts to determine the outcome of eco-
nomic relations between the society and
nature in general.

Second, we have the matter of that
great conflict which has always domi-
nated mankind’s struggle to bring to an
end forms of society, in which large
rations of the total population are
reduced to the relative status of “human
cattle”: slavery, serfdom, and so forth. In
Christianity, this distinction is presented
as the policy, that it is equally true of
each individual man or woman, with no

allowance for any ethnic or racial dis-
tinction among persons, that each per-
son is made in the image of the Creator.
This signifies a power of cognition
unique to the human individual among
living species, a quality sometimes iden-
tified as “the divine spark of reason.”
This is a quality typified by the processes
of the individual mind, by means of
which that mind generates a validated
discovery of a physical principle.

This latter conception of the human
individual is inseparable from the
notions of truth and justice, as those
notions are addressed in the dialogues of
Plato. The principle is, that each indi-
vidual is efficiently accountable for
truthfulness and for a sense of justice,
accountable in the sense, that the mea-
sure of truthfulness and justice does not
depend upon manifest coincidence with
the expressed opinion of a majority, or
even a large minority. Indeed, all
progress in the human condition, eco-
nomically or otherwise, occurs in no
other way, than a validatable rejection of
“mainstream opinion.”

“Majority rule” has no intrinsic merit.
Most of the time, on most issues, the
majority has been wrong; that will
always be true, by the very nature of

progress. The progress of society, its
capacity for truthfulness and justice,
depends absolutely upon the willingness
of the majority to submit to the contrary
opinion of even a single person, when
that person is able to show, by no other
means than reason itself, that the majori-
ty must change its belief, if truth and jus-
tice are to be served. The object of good
society, is not rule by majority opinion,
but rather rule by good conscience.

That means, that reason, and reason
alone, is the efficient political means by
which governments themselves must be
governed. That means, that to have such
a society, it is essential that every child
be developed in the ability to be ruled, to
rule, and to be self-ruled by such com-
mitment to service of truth and univer-
sal justice; that that society has no differ-
ent purpose, in effect, than to establish
agreement in practice in this way. The
good society is not one in which existing
opinions are merely counted, with
authority given to the majority of votes;
the good society, is one in which no per-
son will force an opinion upon another,
except by processes of open deliberation,
in which the rule of accountability to
reason is allowed the freest play.

On this account, the greatest states-
men, such as Benjamin Franklin or
Friedrich Schiller and Wilhelm von
Humboldt, have laid the stress on a
Classical humanist mode of primary and
secondary education, to develop thus
those intellectual and moral capabilities
of the individual human mind, upon
which a society’s ability to be self-ruled
by reason, chiefly depends.

The latter point made, we might ask
ourselves, how, since virtually no society
has ever consented, in actual practice, to
rule by reasonable deliberation, did soci-
eties ever progress? Generally, great
progress occurs only in circumstances of
threat of terrifying crises, in which
frightening crisis, or prospect of crisis,
shows much of the population the mani-
fest failure of previously prevailing opin-
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June 20, 1791: Jacobin mob invades the
French Assembly, demanding death to the
aristocracy.C
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ions. Wars and revolu-
tions, have been not
the exclusive circum-
stances for progress,
but, in history to date,
the most likely ones.
The fearful prospect
of the consequences of
heteronomy, impels a
population to rally
around those leaders
who speak with a clear
voice of reason. At
other times, heterono-
my is more likely to
prevail. Therefore, the
new crisis whose onset
now grips Russia, and,
soon, much of the rest
of the planet, must be
welcomed, gratefully,
as the needed crisis
which prompts us to
do the good we were
unlikely to attempt
otherwise. We see this crisis as the
opportunity to defeat, to free us from
that religious quality of monetarist fer-
vor which is presently the greatest threat
to civilization.

The practical question is, how to
develop a society to such a degree, that
crisis is no longer the only strict teacher
of truth to governments and popular
majorities.

Consider the French Revolution in
this light.

The Actual Conflict

The problem has been, that European
civilization has never fully freed itself
from the legacy of that Whore of Baby-
lon known variously as the Roman and
Byzantine Empires. European feudal-
ism was a continuation of that degenera-
cy. This evil of feudalism was chiefly
expressed in two social formations. The
one, was the feudal landed aristocracy;
the second, was a financier oligarchy,
whose roots can be readily traced to the
time of ancient Akkadian dynasties.

There is a crucial, additional feature
of the feudal tradition: its brutish notion
of law. Since ancient empires and feu-
dalism were based upon the reduction of

more than ninety percent of humanity
to the “human cattle” serving the inter-
ests of a relatively tiny oligarchy, a true
natural law could not be tolerated by
any empire, or by any society which har-
bors an oligarchy.

The characteristic function of every
oligarchical model of society, is to serve
the perceived interest of oligarchism.
The function of the empire, was to select
a chief magistrate, such as a hereditary
or other tyrant, who would serve as a
surrogate for the entirety of the oli-
garchy in matters of law. The law
became, thus, the expressed will of that
surrogate for the collective will of the
oligarchy as a whole.

This tyrannical essence of pre-mod-
ern society was often slightly tempered
by the notion of customs, notably
including the legally authorized cus-
toms, in religion, or otherwise, of subject
peoples. Otherwise, there was no uni-
versal principle of individual human
nature, which bound the oligarchy to
any principle of truth or justice founded
upon a universal agency of reason.
Thus, the characteristic of the law of oli-
garchical societies, is its intolerance
toward such notions of a natural law.

There is a derived feature of oli-
garchical society which played a domi-
nant role in the French Revolution,
under the Jacobins and under Napoleon
Bonaparte. Since the original, Meso-
potamian, Whore of Babylon, the
administration of society by the oli-
garchy itself, has depended upon a more
numerous body of oligarchical lackeys,
constituting a permanent bureaucracy in
the government of the society’s affairs. In
the case of both the Jacobin tyranny and
the tyranny of Napoleon, and also in the
cooperation of Britain with von Kaunitz
and Metternich, the common motive
underlying the process, from 1789
through 1848, and beyond, was the com-
mon desire to exterminate the young
United States, to crush it, as it were an
unwanted infant, in the cradle. The ear-
liest objective, was to prevent that Amer-
ican model of republic from spreading
successfully into Europe; once France
had been integrated into a Europe jointly
ruled by Britain and the Holy Alliance,
the common object was to isolate and
destroy the United States itself.

So, from 1814 through 1848, all of
Europe was the mortal enemy of the
United States. In this process, both the
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July 4, 1776: The Declaration of Independence is presented to the Continental Congress. Included in the drafting
committee are Benjamin Franklin, Thomas Jefferson, and John Adams. 
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Jacobin tyrants and the Napoleonic state
bureaucracy of France, were merely
lackey-instruments, in service to Euro-
pean oligarchical interest.

Thus, for reasons supplied in earlier
locations, the form of modern European
society, in Europe and in the Americas,
as this developed during the Seven-
teenth through Twentieth centuries,
had two sets of determining features. To
the degree that the influence of the
republican forces either established a
republic, as in the case of the U.S.A., or
forced approximations of nation-state
republic conditions upon reluctant oli-
garchical potencies, all modern Euro-
pean society acquired a dual character.
On the one side, there was the oligarchy,
represented by its two leading types,
landed aristocracy and financier oli-
garchy. On the opposing side, the com-
bined classes of productive entrepre-
neurs, professionals, and others, who
constituted the social forces of national
economy. In this process, the frictional
conflict between financier oligarch and
landed aristocrat was typified by
Britain’s use of its Mazzinian agents, to
weaken and ultimately wreck the politi-
cal power of continental landed aristoc-
racy. In this way, more and more, the
conflict in society became essentially the
relationship between the parasite, the
financier oligarchy, and host-victim, the
social forces of national economy.

Russia’s Intellectual Crisis

This issue of the truth about the French
Revolution, is an essential part of the key
to solving Russia’s most crippling intel-
lectual crisis: the fact, that it has yet to
undertake the needed scope and depth of

rational review of the roots for what is
popularly identified by many as “the fail-
ure of Soviet Communism.” Under Gor-
bachev, Russia leaped, blindly, out of the
ship of Soviet Communism, into the
most radically decadent slum of so-called
“western” economy, and that with the
combined zeal and awkwardness of a
drunken sailor storming the bed of a
common prostitute. One should not be
astonished by the relevant result.

On the other side, we have national
economies, such as those of the United
States and Germany, which had previ-
ously accomplished virtual “economic
miracles,” until the late 1960’s, through
investment in development of infra-
structure, and in energy- and capital-
intense scientific and technological
progress. Now, both are destroying
themselves with the same monetarist
carpetbagging tricks of “mergers and
acquisitions” which have looted the
remains of former Soviet national
resources and capital improvements of
Russia. At present, this has gone almost
to the point that national extinction of
Germany and the U.S.A. is now already
visible, on the horizon a few years
ahead.

If Russia does not change suddenly, it
is doomed, and that very soon. If it
attempts to change, without participa-
tion in early agreement to the appro-
priate, revolutionary “New Bretton
Woods” system, Russia might survive as
a national identity in the long run, but at
the price of a terrible sacrifice in the
medium-term.

Thus, we see the religious fervor of
the lunatic majorities: among policy-
shapers in the U.S.A. and western

Europe, and in the failure of the majority
of Russia’s leaders to settle intellectual
accounts with the fatal flaws of the lega-
cies adopted by Soviet Communism. For
both cases, the common solution ought to
be clear; we must, at last, rid this planet
of the vestiges of that feudal relic which
is financier oligarchy. The solution is
clear; we need but rally the institutions of
national economy, freed of the encum-
brance of financier-oligarchy. Then, we
might embark on the kinds of interna-
tional cooperation in national develop-
ment, which have proven themselves
repeatedly, as in responses to crisis, in
many nations, during recent centuries.

The coup from above will not suc-
ceed in even the relatively short-term.
Symptomatic responses will not still the
mounting disquiet. The actual source of
energy for the political instability, must
be addressed, directly. The heart of the
solution is to recognize the real enemy.
Since he is bankrupt, in fact, we have
but to put him through the obvious, sen-
sible, liquidation in bankruptcy, by
means of which we may rid ourselves of
that cause of our affliction, that parasite,
once, and, hopefully, for all.

Those changes are the choice of revo-
lution which must be made. If we fail to
take that option, then we are doomed to
other kinds of revolutions none of our
nations were likely to survive. What we
are seeing in the circumstances behind
Russia’s recent coup from above, is the
shudder of leaves at the edge of the
oncoming storm. That storm will devas-
tate us all, unless we quench, very, very
soon, the religious fervor of that present
lunatic majority among the policy-shap-
ing set.
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In the case of both the Jacobin tyranny and the tyranny of Napoleon, and also in the
cooperation of Britain with von Kaunitz and Metternich, the common motive underlying
the process from 1789 through 1848, and beyond, was the common desire to exterminate
the young United States, to crush it, as it were an unwanted infant, in the cradle. 
The earliest objective, was to prevent that American model of republic from spreading
successfully into Europe; once France had been integrated into a Europe jointly ruled 
by Britain and the Holy Alliance, the common object was to isolate and destroy the 
United States itself.
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The news released by the
Egyptian government,

that the international project
to rebuild the old library of
Alexandria was nearing com-
pletion, must be classed not
merely as an item of specialist
interest, but as an event of
world historical importance.
For, the Alexandria library
was not merely one among
many ancient institutions, to
be commemorated for the
sake of antiquity: it was a
model of the educational
institutions required to create
geniuses, today as then.

Throughout history,
mankind has created institu-
tions of culture which prove
to be the crucibles for scien-
tific advance, among them,
the Academy at Athens, the
great Madrasas of the Islamic
Renaissance, the cathedral schools of
medieval Europe, Groote’s Brethren of
the Common Life, the Humboldt educa-
tion system, the Ecole Polytechnique of
Gaspard Monge, to name only a few.
And, from earliest times, the greatest
advances in social progress have been
associated with civilizations whose rulers
placed emphasis on the importance of
libraries: It was through the establish-
ment of libraries that Greek culture radi-
ated learning to broader circles.

In Islam, the great caliphs of the
Abbasid dynasty (A.D. 750-1258) dedi-
cated enormous sums of money and
time to collecting books. The idea was,
that in order for a society to advance, it
must have at its disposal the best prod-
ucts of the human mind, from anywhere
in the world, any religious tradition, and
from any period of history. Thus, the
legendary Baghdad caliph Harun al
Rashid and his follower al Mamun, sent
emissaries throughout the world, to find
manuscripts of philosophical, scientific,

and other works. So, too, the immensely
rich culture of Andalusia in Muslim
Spain, was largely a product of the inde-
fatigable efforts of leaders like Abd al
Rahman III (A.D. 912-961) and Al
Hakim II (A.D. 961-976), to collect the
fruits of learning in central locations, for
scholars and ordinary citizens to benefit
from. Similarly, the advances of Renais-
sance Italy would be unthinkable with-
out the collection of manuscripts by such
humanists as Francesco Petrarca and the
protagonists of the Council of Florence.

This practice goes back to the ancient
world, to Greece, and the library at
Alexandria was its most illustrious exam-
ple. But it was not the only one, nor the
first. Book collecting was widespread
among intellectuals and political figures
in ancient Greece. Even the Athenian
tyrant Pisistratus (605-527 B.C.) was a
lover of music and culture, and was
reputed to be the first to commission a
group to assemble and edit the works of
the great epic poet Homer. He is also

reported to have been the
founder of the first public
library in Athens. It was
known that the great drama-
tist Euripides (480-406 B.C.)
had a large collection of
books, although details about
them are lacking. Plato (427-
348 B.C.) collected manu-
scripts during his many trav-
els to Magna Graecia, and his
student Clearchus (d. 353 B.C.)
was reported to have founded
a library. In Pergamum,
where a school of the Stoics
was founded, the library,
founded by Eumenes II, was
known as the Pergameniana,
and boasted 200,000 rolls of
papyrus or parchment. (From
the second century B.C.,
Pergamum was the center of
the production of parchment,
which was the writing materi-

al made from the skins of animals, used
to produce books.) Antioch was another
site of a great library in the ancient
world, which, under Antiochus IV,
became an intellectual center.

But the greatest library of all was that
at Alexandria.

The Vision of Alexander the Great

It was Alexander, rightly named the
Great, who, after having conquered
Egypt, undertook to found a city bear-
ing his  name—as he would do
throughout Asia—which was to be a
commercial crossroads between East
and West, as well as a cultural and sci-
entific center of the world. Alexander
made the momentous decision on Jan-
uary 20, in the year 331 B.C., when he
saw the site at Rakotis, in the Nile
delta, where the island of Pharos jut-
ted out into the Mediterranean. He
ordered his architect Dinocrates to
chart out a plan for the city. In 323
B.C., after Alexander’s untimely death,

A Dream of Alexander the Great, at the Crossroads of East and West

The Alexandria Library Will Be Reborn

Scholars consult scrolls in one of the halls of the ancient library of
Alexandria, in this Nineteenth-century illustration.
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the satrapy of Egypt fell  into the
hands of Ptolemy, and it was under
the Ptolemies—Ptolemy I Soter (323-
283 B.C.) and his son Ptolemy II (285-
246 B.C.)—that Alexandria city was
developed.

The city, which was to become the
largest in the Greek world, was divided
into three districts, or quarters, populat-
ed, respectively, by Egyptians, Greeks,
and Jews. Graced with ample wide
avenues and magnificent marble and
stone buildings, the city was considered
indestructible. There were four great
buildings which stood out above the rest.
The first was the Soma, which was built
to house the body of Alexander,
embalmed and encased in gold. Next
was the Serapeum, with the Temple of
Serapis for worship. Then, there was the
museum, located in the Greek quarter
known as the Brucheion. This was actu-
ally a center of study, with lecture rooms,
galleries, and housing for hundreds of
students, who could reside there and
study. The students undertook to copy
manuscripts, to edit them, to study them,
and to conduct research of their own.
The institution which provided them the
material, was the famed library, the
Alexandriana. The library
was organized in ten large
halls, each of which corre-
sponded to a branch of
learning. In each hall,
there were thousands of
manuscripts, carefully cat-
alogued and classified.

Among the many
accounts in the ancient
world of the building of
the fabulous library and
museum, there are nu-
merous divergences as to
who actually constructed
it, whether Ptolemy Soter,
under the recommenda-
tion of Demetrius of
Phaleron, in 295 B.C., or
Ptolemy II, “Philadel-
phus,” his son and succes-
sor. According to the ver-
sion provided by Epipha-
nius (A.D. 320-403 ):

“Now, the successor of
the first Ptolemy [Soter]
and the second of the

kings of Alexandria was, as we said,
Ptolemy, surnamed Philadelphus. He
was a lover of all that is beautiful and of
literature, and built a library in that
same city of Alexandria in the Bruchi-
um so-called . . . which he placed under
the charge of one Demetrius of
Phalarene. Him he bade collect the
books in existence in every quarter of
the world, and he wrote letters impor-
tuning every king and governor on
earth to send ungrudgingly the books
[that were within his realm or govern-
ment]; I mean the works of poets and
prose writers, orators and sophists,
physicians, professors of medicine, histo-
rians, and so on. 

“One day, when the business was
proceeding apace and the books were
being assembled from all quarters, the
king asked his librarian how many vol-
umes had [already] been collected in the
library. He made answer to the king and
said: ‘There are already 54,800, more or
less. But I hear that there is still a great
mass of writings in the world, among
the Ethiopians and Indians, the Persians
and Elamites and Babylonians, the
Assyrians and Chaldaeans, among the
Romans also and the Phoenicians, the

Syrians, and them of Hellas. . . . There
are, moreover, with them of Jerusalem
and Judaea certain divine books of the
prophets, which tell of God and the cre-
ation of the world and contain all other
teaching that is for the general good.
Wherefore, O king, if it is thy Majesty’s
pleasure to send for these, also do thou
write to the doctors in Jerusalem, and
they will send them to thee.’ ”1

This, Ptolemy did. According to an
account given in an annotation in the
Fifteenth-century parchment text of a
work by the Roman playwright Plautus,
known as the Plautine scolium from
Caecius, the following occurred:

“Alexander of Aetolia, Lycophron of
Chalcis, and Zenodotus of Ephesus, at
the request of King Ptolemy Philadel-
phus by surname, who wonderfully
favored the talents and the fame of
learned men, gathered together the
poetical books of Greek authorship and
arranged them in order: Alexander the
tragedies, Lycophron the comedies, and
Zenodotus the poems of Homer and of
other illustrious poets. For that king,
well acquainted with the philosophers
and other famous authors, having had
the volumes sought out at the expense of

the royal munificence all
over the world as far as
possible by Demetrius of
Phaleron (and other
counsellors), made two
libraries, one outside the
palace, the other within
it. In the outer library,
there were 42,800 vol-
umes; in the inner,
palace library, 400,000
mixed volumes and
90,000 single volumes
and digests, according to
Callimachus, a man of
the court and royal
librarian, who also wrote
the titles for the several
volumes. Eratosthenes,
not very much later the
custodian of the same
library, also makes this
same statement. These
learned volumes, which
[Demetrius] was able to
obtain, were of all people
and languages; and theCut-away architectural model shows interior plan of the new library.
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king caused them to be translated into
his own language, with the utmost dili-
gence, by excellent interpreters.”2

Ptolemy Philadelphus, who succeed-
ed his father in 284 B.C., ruled over a
vast empire, in a period of flourishing
trade. He inaugurated vast infrastruc-
ture projects, promoted the construction
of new cities, and encouraged immigra-
tion. During his rule, the empire count-
ed about seven million inhabitants, liv-
ing in 33,000 cities and
villages. Ptolemy’s
teachers, who imbued
him with a love of
classical learning, had
been the poet Philetas,
the grammarian Zen-
odotos of Ephesus,
later the first head of
the library, and the
philosopher Straton,
who taught him Greek
and the sciences. Ptole-
my Philadelphus fol-
lowed the example of
Alexander in his
encouragement of nat-
ural sciences. It is related, that he sent
emissaries abroad, in search of unusual
animals, which he wanted brought back
to Alexandria for study. His envoys
travelled to India and throughout the
Arab world, and brought back not only
animals, but in-depth reports on the
lands and customs they observed.

This great library became the center
of learning of the world for over nine
hundred years, and, in particular, a
repository of the great accomplishments
of Classical Greece. It attracted the
greatest minds of Hellenistic culture like
a magnet, minds like Straton, the comic
poet Philemon (c. 361-262 B.C.), the
geometer Euclid (fl. c. 300 B.C.), the
physician Herophilus, Theodoros, the
philosopher Hegesias of Cyrene, the
poet Callimachus (c. 305-240 B.C.), his
pupil Eratosthenes (275-194 B.C.), and
many more. Among the librarians said
to have been appointed to supervise the
great institution, were Zenodotus, the
tragic poet Alexander of Aetolia, Calli-
machus, and Eratosthenes. Others
included Apollonius of Alexandria, the
lexicographer Aristophanes of Byzan-
tium (257-180 B.C.), and Aristarchus of

Samothrace (c. 217-145 B.C.). And,
because of the library, Alexandria
became a center radiating the heritage of
Classical (i.e., Platonist) philosophy and
science throughout the Greek-speaking
Mediterranean, in the years preceding
and following the birth of Christ—as
reflected in both the works of the Jewish
philosopher Philo of Alexandria, and
the New Testament Gospel of John and
Epistles of Paul.

From the time of the reign of Ptole-
my II, the king himself was an integral
part of the intellectual process centered
in the library. It is reported that
Philadelphus, eager to expand his learn-
ing, went to listen to the lectures given
by the scholars, and, like his father and
Alexander, organized literary competi-
tions.3 Under his son and successor,
Ptolemy Euergetes (246-221 B.C.), this
tradition was carried forward, as the
ruler attracted more men of learning to
the city, and actively participated in the

research activity they carried out. It was
in the reign of Ptolemy Euergetes, that
the great Eratosthenes was invited to
Alexandria, from Athens. He arrived in
228 or 226 B.C., and took on the respon-
sibility of librarian. Eratosthenes, who
was renowned as a grammarian, poet,
philosopher, historian, and mathemati-
cian—indeed, revered as a “second
Plato,”—conducted research, experi-
ments, wrote, and taught, until his

death in 196 B.C.4

The Ptolemies’
dogged determination
to make Alexandria the
center of learning, led
them to send emissaries
worldwide in search of
manuscripts. Ptolemy
Philadelphus pur-
chased the volumes in
the library of Aristotle,
as well as various ver-
sions of the Homeric
epics. In fact, he bought
so many works, that he
had to enlarge the
library, to accommo-

date them, and in 250 B.C., new rooms
were made available in the Serapis tem-
ple. It is related, that in their zealous
search for knowledge, they would bor-
row famous manuscripts—for example,
Ptolemy Physikon managed to get origi-
nals of the plays of Aeschylus, Sopho-
cles, and Euripides—and have them
copied, only to send back to the owner
not the original, but the copy! The first
200,000 rolls were collected by
Demetrius of Phaleron, according to the
First-century B.C. Jewish historian Jose-
phus. And the number increased, as the
Plautine scolium documents, to 532,800.
Later, the number was reported to be
700,000. Among these were large num-
bers of translations, including the trans-
lations into Greek of the Hebrew holy
texts, the Old Testament. It is also relat-
ed, that Euergetes II, in his zeal to main-
tain the primacy of the Alexandria
library, forbade the export of papyrus,
hoping thereby to limit the trade in
writings. It was as a result of this embar-
go, that his competitors in Pergamum
invented parchment.5

The books, or rolls of texts, were
carefully catalogued in the immense

Dynasty founder Ptolemy I Soter, a 
general of Alexander’s army (top). His son,
Ptolemy II Philadelphus (left). Cleopatra,

last of Egypt’s ruling Ptolemies (right).
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library. Callimachus, as librarian,
undertook the task of organizing bio-
graphical and bibliographical tables of
the works of poetry and prose. It is
reported that Callimachus produced a
work on the Museum, now lost; a
“Table and Register of Dramatic Poets,
chronologically from the earliest times”;
and, “Tables of all those who were emi-
nent in any kind of literature, and of
their writings,” the first comprehensive
history of literature, in 120 volumes.6

The mere existence of such works by
Callimachus attests to the character of
the Alexandria library, as a highly orga-
nized center, where virtually everything
known to exist in literature, history, phi-
losophy, and sciences, was available,
along with supplementary critical and
bibliographical aids.

How the Library Was Destroyed

That such an institution could come into
being, flourish, and grow, was due to
the efforts of political and intellectual
leaders who fully understood the crucial
significance of the spread of knowledge,
as the precondition for social and eco-
nomic progress and stability. By the
same token, it was thanks to the person-
al depravity and political wretchedness
of later political leaders, in the Roman
Empire and later, that the great library
and museum were destroyed.

There are many historical versions of
what happened to the library, at times
contradictory. But what can be ascer-
tained, for certain, is that the first seri-
ous blows to it came from the
worst of the Roman emperors.

The scene had been set,
from the reign of Ptolemy
Philopater to Ptolemy Euer-
getes II (221-116 B.C.), for dis-
aster, as the Ptolemies, though
ostensibly still committed to
patronizing science and the
arts, themselves fell into deca-
dence. As a result of misrule,
tyranny and corruption, social
unrest spread, and open fac-
tionalization between Alexan-
dria and Rome emerged fol-
lowing the death of Ptolemy Euergetes
II in 116 B.C.. This climaxed in 48 B.C.,
when Julius Caesar arrived in Alexan-
dria, to battle Pompey and Cleopatra. In

the ensuing war between Caesar and the
Alexandrian fleet, fires ravaged the city.
According to the account of Dion Kas-
sios: “Now, there were battles by day
and by night, and many buildings went
up in smoke: the naval and other arse-
nals, the grain storehouse, and the
library, the richest and grandest of that
day, so it is reported, was burned to the
ground.”

To which the historian Geord Klip-
pel adds: “On this occasion, 400,000 book
scrolls, along with the gracious halls
where they were housed, fell victim to
the flames within a few short hours, and
world literature suffered an irreplaceable
loss, which is all the more painful for us,
because with this destruction in Alexan-
dria of so many invaluable works of
antiquity, the most important sources for
our history were lost forever.”8

Cleopatra, who was reportedly well

educated in Greek, Latin, Egyptian,
Ethiopian, and other Eastern languages,
knew the value of the library which had
been destroyed, and, after the assassina-
tion of Caesar, prevailed upon Mark
Antony to transfer 200,000 volumes
which were housed in the library at
Pergamum, to Alexandria.

Peace was reestablished after the
civil wars under the reign of Octavian
(Emperor Augustus), and the library
was rehabilitated. The fame attached to
the name of Alexandria remained such,
that virtually all the Roman emperors
tried, in one way or another, to present
themselves as protectors of learning.
Even the notorious tyrant Tiberius
(ruled A.D. 14-37) tried to profile him-
self as a lover of the sciences, and wrote
poems in various languages. The
emperor Claudius (ruled A.D. 41-54)
supported the library, and even
enlarged it. A scholar of Greek,
Claudius also arranged for lectures to
be held in the museum on Etruscan and
Carthaginian history.9 Even the psy-
chotic Nero put himself forth as a
friend of the arts, not only defending
them, but aspiring to be a poet himself.
The same can be said of Vespasian and
Titus, Trajan and Hadrian.

The turn for the worse occurred
under Caracalla (ruled A.D. 211-217).
This bloody tyrant, who traversed his
provinces, plundering and killing as he
went, was made the subject of ridicule
by the Alexandrians, in a series of poems
and stories.10 To teach them a lesson,

Caracalla proceeded into the
city, and gave the order to
his troops to enter houses
and slaughter everyone
indiscriminately. One ac-
count has it, that he entered
Alexandria under the pre-
text of wanting to pay
homage to Alexander. He
made great show of respect
for the city’s founder, by vis-
iting the Soma, and then
went to the Temple of Ser-
apis, allegedly to worship.
Caracalla ordered all the

youth of the city to line up in phalanx
formation, according to age and size,
because, he said, he wished to admire
them. Instead, he gave the order to his

Emperors of Rome ruled Egypt and
Alexandria after the Ptolemies. Augustus,

first Roman Emperor (top). Caracalla
(left). Diocletian (right).
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troops, to slaughter the unarmed youth,
and plunder the city. Blood ran through
the streets in rivers. The library sur-
vived, but barely. It was reported, later,
to be standing, but with no occupants.

Further devastation occurred at the
hand of Zenobia in A.D. 270, and in 295,
Diocletian laid siege to the city, slaugh-
tering the people and burning the build-
ings. Diocletian gave the order to seek
out what books remained and destroy
them by fire.

Under Theodosius the Great 
(A.D. 375-395), the wave of destruction
which swept over Alexandria moved
under the pretext of eliminating pagan-
ism. With the Edict of Theodosius, it
was decreed that all the temples and
pagan idols had to be destroyed. This
included not only the Temple of Ser-
apis, but, apparently, also the library
and its works, which were eliminated in
A.D. 389. Three hundred thousand vol-
umes were stolen or destroyed, and the
members of the museum were forced
either to embrace Christianity or to
flee.11 Thus, three hundred years later,
when the Arabs arrived under ‘Amr ibn
al-’As, and the authority of ‘Umr ibn al-
Khittab, conquering Egypt and Alexan-
dria in about A.D. 642-46, there were
very few rolls left in library’s once glori-
ous collection.

Rebuilding the Library Today

It is most fitting that it is an Arab gov-
ernment that has decided to reconstruct
this wonderful institution, especially
given the widespread acceptance of the
slanderous myth—wholly contrary to
the documented historical record—that
the Alexandria library was destroyed by
the Arabs during the period of Islamic
expansion. As the historical record
shows, the library was a most resilient
institution, which held up over cen-
turies, in the center of a fight to the
death between those forces—present in
various cultural traditions—which pro-
moted the spreading of knowledge as
the means to uplift and develop human
society, and those forces dedicated to the
idea of the tyranny of the few, who
might impound such knowledge as a
secret weapon, to maintain control over
the ignorant masses.

The idea to rebuild the library goes
back to 1974, and is attributed to Egypt-
ian historian Mustafa al-Abbadi. The
ambitious project was designed not only
to commemorate the historic library, but
to replicate it for the modern world. On
June 26, 1988, Egyptian president Hosni
Mubarak laid the foundations for the
building, accompanied by the director-
general of UNESCO, which issued a
call to individuals, organizations, and
countries to support the project. An
International Committee for Supporting
the Funding Campaign, was established
at the request of Egypt. In 1990, $230
million was pledged, mainly by Iraq,
Saudi Arabia, and the United Arab
Emirates. The Egyptian government
has underwritten the budget.

The first phase, building the sub-
structure, at a cost of $60 million, was
completed in December 1996, by the
Egyptian state company, together with
Italian partners. The second phase start-
ed immediately thereafter, for the con-
struction of the main building, which is
to be ten storeys high. This part, which
will cost $120 million, is being construct-
ed by Arab contractors and a British
company. The library should have
69,000 square meters (750,000 square
feet) of floor space, and should be able to
house eight million volumes, in addition
to hundreds of thousands of manu-
scripts, tapes, compact discs, and videos.
In the words of Yousri El Hakim, who
is the engineer heading up the construc-
tion monitoring unit, work is proceed-
ing at a rapid pace, so as to complete it
this year. “We have 400 workers from
all over the world,” he said, “working 24
hours a day in two shifts. . . . We
should be finished by the end of 1998.”
El Hakim added that although
UNESCO had been instrumental in the
initiating phase of the project, “now it is
100 percent Egyptian, under the min-
istry of higher education.”

The project leaders are trying to
replicate the efforts of the Ptolemies, in
gathering important works from all
over the world. As the project manager
Dr. Mohsen Zahran reports, the new
Bibliotheca Alexandrina received a gov-
ernment budget for purchases, and
350,000 books have been acquired thus

far. In addition, governments and insti-
tutions from around the world have gen-
erously contributed magnificent items
for the center. Among them, is a com-
plete microfilm record of the priceless
Arabic manuscripts in the Escorial
Library in Spain, donated by the Spanish
Royal Family in June 1997. France has
donated several important books, includ-
ing a copy of the Bible printed by Guten-
berg. According to a protocol signed
between Egypt and France, a grant of 4.4
million French francs is to be allocated for
an advanced, multi-lingual data system,
which will effectively constitute an index
linked to the world’s scientific networks.
Already, 130,000 traditional and electron-
ic data channels have been obtained, and
personnel for the library are undergoing
training locally and overseas. Australia
has offered a $10,000 grant-in-kind,
which includes books published in Aus-
tralia. The public library of the city of
Starazaogra in Bulgaria will donate a rare
copy of the Holy Quran to the library.
The copy, which was received by Egypt’s
ambassador to Bulgaria, dates back to the
year 1278 of the Hijra.

Thus, if the project reaches comple-
tion at the end of this year, the world
will be considerably richer. The revived
library of Alexandria should become,
like its namesake, a center of learning
and research, with emphasis on the civi-
lizations of ancient Egypt, Greece, and
the Eastern mediterranean. Scholars
from throughout the world should flock
there, as their ancient counterparts did,
to study, deliberate, research, teach, and
generate new discoveries.

—Muriel Mirak Weissbach

Additional illustrations appear on the in-
side back cover of this issue.

NOTES
1. Edward Alexander Parsons, The Alexandri-
an Library: Glory of the Hellenic World, Its
Rise, Antiquities, and Destructions, (Amster-
dam-London-New York: Elsevier Press,
1952), pp. 101-102. 2. Ibid., pp. 108-109. 3. Dr.
Geord Heinrich Klippel, Über das Alexan-
drinische Museum, drei Bücher (Göttingen:
1838), p. 124. 4. Ibid., pp. 140-141. 5. Ibid., p.
161. 6. Parsons, op. cit, pp. 208-209. 7. Quoted
in Klippel, op. cit, p. 186. 8. Ibid., p. 187. 9.
Ibid., p. 211. 10. Ibid., pp. 226-227. 11. Ibid.,
pp. 251-252.



From 1938, through the entire Sec-
ond World War, a consortium of

British intelligence agencies, acting on
behalf of the British Monarchy and
Prime Minister Winston Churchill,
committed a wide range of criminal acts
inside the United States. Agents of the
British intelligence services, including
American citizens who were recruited
to serve the British Empire as spies and
agents provocateur inside the United
States, interfered with American elec-
tions, planted disinformation in the
American media, created phony front
groups, and engaged in violence, up to,
and including, murder. Their efforts
were abetted by the F.B.I. and by high-
ranking officials of the Department of
Justice. Their dirty tricks were lionized
by the Anglophile press, while their tar-
gets, including U.S. elected officials,
were treated to a steady diet of media
slanders.

In the case of British intelligence’s
targetting of one particularly powerful
isolationist Congressman, Hamilton
Fish, British intelligence agents waged a
five-year “dirty tricks”campaign, which
ultimately resulted in Fish losing his
seat in Congress. Funds for the effort
were provided by wealthy New York
City Anglophiles and by front groups
for MI-6.

In this painstakingly researched, yet
highly readable account of British covert
operations in the United States during
the pre-war and World War II period,
Tom Mahl has unraveled an important
page of the history of British-American
relations. Originally submitted as a doc-
toral dissertation in history at Kent State
University, his book is based on newly
released British and American wartime
intelligence archives.

Mahl was confronted with a particu-
larly difficult task in revisiting the activ-
ities of Sir William Stephenson, “the
man called Intrepid,” the legendary
head of the British Special Operations
Executive (S.O.E.) activities in the Unit-
ed States. Stephenson’s principal mis-
sion, from the moment he set up shop in

Rockefeller Center in the spring of 1940,
was to draw the United States into
World War II on the side of Great
Britain.

But, as the author notes in the open-
ing paragraph of Chapter 2, “One thing
is evident. Members of the American
elite, including President Franklin 
D. Roosevelt, were not tricked into 
the war; they were not victims. They
were as eager as the British to fight
Hitler.”

Despite their surface convergence of
interest to defeat Hitler and the Nazi
menace, Mahl fails to explain to his
readers that Franklin Roosevelt and
Winston Churchill were driven by very
different motives. As the war pro-
gressed, and the Allied leaders held a
series of summit meetings, the chasm
between FDR and Churchill widened,
principally over the issue of how to
shape the postwar peace.

Churchill vs. Roosevelt

Roosevelt had a postwar vision of a
world free of the tyranny of Hitler, but
also free of the tyranny of the European
colonial empires. For Churchill, the sur-
vival of Britain was synonymous with
the postwar revival of the British
Empire. And, many of the American
Anglophiles who joined with Stephen-
son in running the war on the home
front against the isolationists and other
opponents of American support for
Britain, shared Churchill’s worldview—
not Roosevelt’s.

Once the United States entered the
war, a majority of these Anglophiles,
who had been involved in such S.O.E.
front groups as Fight for Freedom, the
Non-Sectarian Anti-Nazi League, the
Friends of Democracy, and the Com-
mittee to Defend America by Aiding
the Allies, were among the first to sign
up with the Office of Strategic Services
and the Office of War Information.
People like Whitney Shepardson and
Allen Dulles, both top O.S.S. figures,
would conspire against Roosevelt, and
even against O.S.S. chief William

Donovan, throughout the war, thus
manifesting their “British First” out-
look.

This complex dimension of the so-
called Anglo-American wartime
alliance is not addressed by Mahl, and as
a result, there is a danger that some
readers might see the book as an apolo-
gia for the isolationist cause. However,
this reviewer has discussed the issue
directly with the author, and is fully sat-
isfied that this was an error of omission
on Mahl’s part.

A.D.L. and S.O.E.

A central figure in the Mahl account of
the S.O.E.’s fifth column inside wartime
America was Sandy Griffith. Griffith
worked for British intelligence. S.O.E.
archives unearthed by Tom Mahl iden-
tified him as “Lt. Commander Griffith,”
I.D. no. G.112. He had an affiliation
with S.I.S. as well. Griffith’s second wife
confirmed to Mahl, that Sandy Griffith
joined British intelligence “in the late
1930’s.”

From 1939, Griffith was the Presi-
dent of Market Analysts, Inc., a polling
and public relations firm that provided
fabricated polling data to all of Stephen-
son’s British Security Control American
front groups.

Griffith also happened to be a lead-
ing figure in the Anti-Defamation
League of B’nai B’rith, finding the time
to run a string of A.D.L.-sponsored pri-
vate investigative firms that maintained
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When five of my friends went to
prison for their political views

more than four years ago, I swore that
we in the LaRouche political movement
would do everything we could to end
the death penalty—against which they
had all fought—before they were
released. Today, they are still in prison,
and the death penalty is still very much
in force.

It is now time—indeed, it was time
long ago—for America to end this bar-
baric relic of the past, and to join the rest
of what purports to be the civilized
world, in renouncing the use of murder
to avenge ourselves on murderers. It is
now time for America to blot out this
last vestige of “frontier justice.” Perhaps
then, we might have the morality to
address the much tougher problem in
our criminal justice system: the corrup-
tion in the Department of Justice itself,
which is most clearly seen in the
LaRouche case.

Frontiers of Justice makes available,
in personal and highly readable
accounts, every argument that has been
made for the abolition of the death
penalty. In addition to the stories told
by those whose lives have been deeply
touched by the death penalty, Frontiers
of Justice also marshals accounts by
some of the nation’s leading experts in
this field, to document the racist and
fundamentally unfair nature of the
application of capital punishment in
America today.

Included are contributions from for-
mer New York Governor Mario
Cuomo, U.S. Rep. Henry B. Gonzalez
(D-Tex.), former U.S. Rep. Harley O.
Staggers (D-W.V.), several legal experts
in the death penalty, two former state
Commissioners of Corrections, and
Jewish, Muslim, and Christian religious
leaders. Woven together with these
more scholarly and documented papers
opposing the death penalty, are very
intimate accounts of the suffering
which capital punishment causes
among the three groups of victims—as
Sister Helen Prejean, author of Dead
Man Walking, has put it: the death-row
inmate, his relatives, and the relatives of
his victim.

Fundamentally Unfair

On the most elementary level of basic
justice, the death penalty is blatantly
unfair. Of the approximately 24,000
murders committed each year in Ameri-
ca, one percent are selected to be prose-
cuted for the death penalty. The U.S.
government’s General Accounting
Office has found the correlation of race
to be a factor present at all stages of the
criminal justice process, in the prosecu-
tion of capital crimes. This includes the
prosecutor’s decision to charge the
defendant with a capital offense, or to go
to trial rather than plea-bargain. In the
end, although half of all murder victims
are Black, 85 percent of those executed
or awaiting execution, since the death

penalty was reinstated in 1976, were
charged with killing whites. A Black
who murders a white is more likely to
get the death penalty, than anyone, white
or Black, who murders a Black.

In addition, since 1976, at least 40
percent of the death penalty convictions
have been reversed. It is fairly estimated
that at least five percent of the inmates
on death row are innocent of the crime
for which they were charged. A recent
Stanford Law Review study revealed,
that during this century in the United
States, at least 417 people were wrongly
convicted of capital offenses, and of
these, 23 were executed. Since the
1970’s, at least 46 people have been re-
leased after many years on Death Row,
because they were discovered to be
innocent.

Finally, the overwhelming majority

illegal files on millions of American citi-
zens, some of which had been obtained
from the U.S. Civil Service Commis-
sion. Griffith’s operation was later
absorbed into the Fact Finding Division
of the A.D.L.

One of Griffith’s front groups, estab-
lished to counter the influence of Father
Charles Coughlin, was the Committee
for American-Irish Defense. It was
headquartered in the New York City
offices of Market Analysts, Inc., but its
base of operation was the Boston office

of the A.D.L. In fact, some historians of
the S.O.E. operations in America made
the mistake of assuming that the Com-
mittee for American-Irish Defense was
one of the few S.O.E. failures, because
almost the entirety of the group’s mem-
bers were prominent figures in the
American Jewish community, all affili-
ated with the A.D.L.

Reading Mahl’s account of Britain’s
World War II-era intelligence penetra-
tion of the U.S., prompted this review-
er to reflect on the present prosecutorial

reign of terror on the part of the U.S.
Department of Justice, the F.B.I.,
I.R.S., etc. The methods fine-tuned
during the war years by British intelli-
gence assets and outright agents—
while nominally in the interest of a just
cause—have left a legacy that is today
one of the great wellsprings of national
disaster. Anyone seriously committed
to understanding the roots of today’s
judicial tyranny, would do well to read
this book.

—Jeffrey Steinberg
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On July 20, 1976, seven years to the
day after the first astronauts land-

ed on the Moon, the Viking I spacecraft
landed on Mars. Its sister ship, Viking
II, landed six weeks later.

Aboard both spacecraft were instru-
ments given the task of answering one
of the most profound questions posed to
science: Has life developed on any plan-
et in the solar system besides Earth?

Mars was the best candidate for a
“yes,” because, like Earth, it appears to
have had a warm and wet past. Also, like
Earth, the inclination of its axis of rota-
tion produces seasons, and it is neither too
far from nor too close to the sun to pre-
clude the possibility of incipient life
forms. It was also known that Mars, un-
like our nearby moon, has an atmosphere.

Of the three scientific instruments
aboard the Viking landers, one was
developed by Dr. Gilbert Levin. His
“Labeled Release Experiment” placed a
drop of radioactive nutrient on a sample
of Martian soil, and measured the gas

released. The experimental result—
radioactive gas emerging from the soil
sample—suggested the presence of life.
For the twenty years since, Dr. Levin
has insisted that these results show that
there is life on Mars. But, for most of
these two decades, the overwhelming
majority of the scientific community has
insisted that Viking found no life on
Mars, in large part because today’s Mart-
ian conditions could not support life.

No one has come up with a plausible
explanation for the results Dr. Levin’s
experiment sent back to Earth, however.
And, what’s more, few in the scientific
community have shown interest in devel-
oping the new experiments for current
Mars missions, suggested by Dr. Levin to
continue the search for the truth.

Mars: The Living Planet is Dr. Levin’s
story.

Life’s Changing Envelope

One thing scientists have recently
learned is, not to be too hasty making

absolute statements about where life can
and cannot exist. Author DiGregorio
has done an excellent and exhaustive job
of summarizing the research of the past
few years, which indicates that life can
exist under many conditions that were
previously thought to be prohibitive,
including conditions found on Mars.

For example, none of the experi-
ments on the Viking landers indicated

of the more than 3,000 men and women
on Death Row in America, are poor.
Thus, the ironic definition of capital
punishment: “Those who lack the capi-
tal, get the punishment.”

‘An Eye For An Eye’?

Because the argument most often used
to justify capital punishment, particular-
ly in the “Bible Belt,” where it is most in
force, is the “eye for an eye” idea of re-
tributive justice found in the Old Testa-
ment, the contribution of Rabbi Ger-
shon Winkler is among the most valu-
able in this collection. Rabbi Winkler
begins by quoting from the Talmud: “A
court that has executed someone as
infrequently as once in seven years, is a
murderous court; others say, even once
in seventy years.”

After detailing the great lengths to
which Jewish courts in the Hellenistic
period went to avoid executions, Rabbi
Winkler writes that, while Jewish law
does not rule out capital punishment, it

“certainly made it close to impossible
to sentence someone to death, did
everything possible to delay execution,
and leaned toward every possibility of
acquittal rather than seeking convic-
tion. In our own time, these rules
would appear politically incorrect,
albeit reasonably compassionate; two
thousand years ago, however, they
were extraordinarily compassionate,
and reflect an attempt at wrestling a
balance between respect for the sancti-
ty of life, and respect for the needs of
society.”

Today, we are going in the opposite
direction. Where Jewish law in the time
of Christ had moved away from execu-
tions, an America that calls itself Christ-
ian (after the Christ who preached
mercy, forgiveness, and love) is turning
increasingly toward capital punishment.

Mahatma Gandhi and Martin Lu-
ther King, Jr., warned that “the eye-
for-an-eye philosophy leaves everyone
blind.” That is certainly not what is

meant by “blind justice”! Let us hope
that Frontiers of Justice, and other simi-
lar attempts to bring the real horrors of
the death penalty into public debate,
will lead this nation to a real blind jus-
tice—one that is both fair and based on
law.

America will then be returning to its
true, anti-oligarchical roots, as Ameri-
can patriot and Declaration of Indepen-
dence signer Dr. Benjamin Rush helped
to plant them, when he launched the
movement to abolish the death penalty
in our country in 1787. As quoted in
Frontiers of Justice, Rush and his fellow
Leibnizians based their movement on
the belief that, as opposed to the harsh
and bloody laws that marked the British
monarchy over which the Revolution
had just triumphed, mild and benevo-
lent ones should characterize republics.
If we are to salvage this first republic
established on Earth, the death penalty
must go.

—Marianna Wertz
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the presence of organic materials
on or near the surface of Mars.
But, could there be life which
required neither organic material,
nor the ability to undergo photo-
synthesis?

DiGregorio reports that in
1995, Dr. Todd Stevens and Dr.
James McKinley, of the Pacific
Northwest Laboratory in Wash-
ington State, discovered anaero-
bic bacteria living on nothing but
volcanic basalt rock and oxygen-
free water, at a depth of 1,500
meters in the groundwater of
Columbia River basalt aquifers.

These rock-eating bacteria
were subsequently named “Sub-
surface Lithoautotrophic Micro-
bial Systems,” indicating an
organism which manufactures
organic nutrients from inorganic
substances (such as basalt rock).
According to DiGregorio, Dr.
Stevens stated that the Viking life sci-
ence experiments would not have been
able to detect such life forms, should
they have existed on Mars.

It is now broadly believed that there
may be liquid water beneath the surface
of Mars. While it is too cold and the
atmosphere is too tenuous for liquid
water to exist on its surface, there is no
doubt that Mars was once, and may still
be, a geologically active planet, with vol-
canoes and other features that could
warm the frozen soil under the surface,
to allow water to exist in its liquid state.

Another problem which many have
pointed out is, that there is little radia-
tion-shielding on Mars, owing to its
thin atmosphere and lack of an ozone
layer, and the ultraviolet radiation that
strikes the planet would be lethal to life.
In response, DiGregorio reviews the
variety of methods organisms on Earth
have developed to protect themselves
from UV radiation.

For example, there are organisms
which encapsulate themselves in water
for protection. Others use a process of
biomineralization, in which the incorpo-
ration of a small particle of iron, pro-
duced by the organism itself, protects it
from ultraviolet light. It has also been
observed that snow algae store dust and

metals within their cell structure to use
as nutrients, as well as for protection
from solar UV.

In addition to the cosmic rays and
UV radiation that bombard the surface
of Mars from space, there is also, most
likely, a constant decay of radioactive
materials present to the Martian soil,
which, it has been argued, could be
lethal to life. Author DiGregorio coun-
ters, by reporting the 1989 discovery of a
radiation-resistant microorganism living
inside the core of the Three Mile Island
nuclear reactor in Pennsylvania. These
cells apparently survive the extreme
radiation environment by producing
enzymes which repair their DNA as
they metabolize.

Thus, given the evidence, any true
scientist would certainly conclude that it
is too early to close the book on the pos-
sibility that life on Mars does exist .

Designing New Experiments

Dr. Levin has not been discouraged by
the opposition encountered from nearly
the entire exobiology profession. He has
continued to propose new experiments
to collect data relevant to the question of
life on Mars.

He has focussed on one unique char-
acteristic of living systems, the fact that

they are chiral (left- or right-
handed). In 1996, the U.S. con-
tributed the “Mars Oxidant
Experiment” (MOX) to the Mars
’96 lander developed by the Russ-
ian Space Agency. Designed to
identify and measure oxidants in
the Martian soil, MOX included a
fiber, proposed by Dr. Levin,
coated with two versions of an
amino acid with opposite hand-
edness. Dr. Levin suggested that
a Martian soil reaction to the left-
handed isomer of the amino acid,
would be an indication of the
presence of life.

Although the Russian Mars
’96 spacecraft did not make it to
Mars (or even out of Earth orbit),
Dr. Levin has continued to pro-
pose experiments for the Mars
landing missions planned by
NASA for the next decade.

These have included modify-
ing the “Thermal and Evolved Gas
Analyzer” already slated to be flown on
the NASA Mars Surveyor ’98 lander, to
include a life-detection experiment.
That proposal was not accepted, the ini-
tial reason being, that searching for life
was not included in the mission.

After the August 1996 announce-
ment by scientists that evidence of past
life on Mars had been detected in Mars
meteorite ALH84001, Dr. Levin pro-
posed his experiment again. This time,
he was told that the process of sterilizing
the spacecraft to prevent Earth contami-
nation, was too expensive.

Nevertheless, the excitement over the
Mars meteorite has renewed scientists’
interest in including life-science experi-
ments on upcoming unmanned Mars
missions.

This is an excellent book. It is a fit-
ting tribute to a man who has stubborn-
ly insisted that scientists should search
for the truth, and should mobilize to
find answers to puzzles they cannot
answer. If that kind of drive is applied
to the puzzle of life on Mars, mankind
may be able to begin to put some of the
pieces together—even before we are on
the way to Mars—to discover the
answer ourselves.

—Marsha Freeman
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Working model of the Viking Mars lander that carried the
life-detection experiment designed by Dr. Levin.
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Authors Victor Hanson and John
Heath are dedicated teachers of

the Classics, who have written a horri-
fying, but true indictment of the
immorality of virtually all of today’s
professional, academic so-called “classi-
cists.” Indeed, it turns out, that there are
some very prominent men among this
pack of vile frauds, who must actually
be classed as grossly criminal, rather
than merely completely immoral.
(Oxford’s Sir Kenneth Dover, for
instance, who admitted in print that he
murdered his academic rival, yet who
bears a knighthood granted by Queen
Elizabeth, for his research on the
Ancient Greeks, and does not lack for
hordes of sycophantic students!) Their
very moving “Catiline Oration,” is fur-
ther combined with a sketch of just
what it is that we must learn from
Ancient Greece. And to this, they have
added an outline of the sorts of academ-
ic reforms that they believe would be
required, to bring these Greek truths to
today’s students, and thus, through
them, to American society generally.

I have learned some significant
things from this book, of particular
interest to students of Classical studies.
Moreover, I share with its authors,
knowledge of certain unpopular but
very important truths, which we three
are not ashamed to teach publicly, even
though they earn us academic ridicule.
And finally, there are many things in
their book, which I must view as
errors, even serious ones. (Especially,
but not only, in the chapter entitled,
“Thinking Like a Greek.”) But, as a
would-be teacher myself, I recognize
unerringly—as do all teachers—the
agapic love characteristic of every man
and woman who is a teacher in the
true sense of the word. Given this
insight into the minds of the authors, I
know that theirs are errors honestly
come by, in the course of a decades-
long search for truth and justice—a
quest in which they have not shrunk
from personal sacrifice.

Thus, for me, the most inspiring pas-
sage in Who Killed Homer?, is one that
begins, “We both have been guilty—
insidiously and flagrantly so—of many
of the professional crimes we rebuke
here. . . .” Whatever nonsense the
philistines may imagine to the contrary,
this cry of “Mea culpa!” is the outermost
gate around the temple of wisdom: No
man or woman ever did, or ever will
become wise, who does not pass through
this gate first.

In fact, if our whole civilization is
now doomed to destruction over the
short term—as it may very well be—
this is very simply, the direct conse-
quence of one little fact: that the self-
indulgent, over-sexed, overgrown fat
children of the ’60’s generation, who
now occupy the seats of power, have yet
to find, and indeed may never find in
themselves the strength of will, 
to force themselves to say these two little
words: “Mea culpa!”

‘A Larger American Renaissance’

Unlike the authors’, my own reasons for
studying Ancient Greek, and teaching it
to others, involve Lyndon H. LaRouche,
Jr., whose projects I have participated in
for now more than thirty years. Hanson
and Heath touch most closely on the
subject of Lyndon LaRouche’s lifelong
effort, when they say, “. . . all attempts to
reinstate Greek wisdom by reforming
higher education, are ultimately doomed
to failure in the absence of a larger
American renaissance.” Lyndon La-
Rouche’s life’s work, has been to work to
bring on that new Renaissance, in Amer-
ica and worldwide. (And, of course, the
literal meaning of the term, “renais-
sance,” is “the rebirth of ancient [i.e.,
Greek] learning.”)

LaRouche’s effort, finds support in
several of the true maxims the authors
cite under the heading, “Thinking
Like a Greek.” As someone who does
not have to answer to a campus “polit-
ical correctness” committee, I am free
to repeat them in my own words, as

follows:
(1) Western Culture—specifically,

as the Fifteenth-century Italian Renais-
sance rediscovered and advanced upon
Classical Greek learning—is the best
culture mankind has yet achieved. This
is not a “racial” or “blood” question.
Quite the contrary: Those who have any
understanding of this culture, are duty-
bound to try to make it available to
every nation and people. And indeed, all
people invariably want it for themselves,
once they understand it.

(2) Further, the superiority of this
Western Culture has immediate mate-
rial consequences. To the degree that
Western Culture has advanced around
the globe (even despite the frequent
crimes of the Western colonial pow-
ers), the world is today able to sustain a
population in excess of five billion—
and indeed, several-fold more, if mod-
ern technologies were fully applied,
especially in Asia, Africa, and Ibero-
America.

But yet, the authors prove, in effect,
that we have now abandoned Western
Culture, in favor of multiculturalism,
moral relativism, monetarism, and the
rock-sex-drug counterculture, among
other foul idolatries. What, then, is the
consequence, if we do not change our
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ways immediately? Nothing, but the
rapid collapse of the world’s population
to the several hundred millions which
was its level at the time of the Italian
Renaissance—through famine, old and
new diseases, and war!

Unhappy Endings

Another of the Greek truths to be found
in Who Killed Homer (again, in my own
words), is that there is not always a
“happy ending.” The boy does not
always get the girl. This is not only true
for the accidents of individual personal
life; it is more importantly true for
whole civilizations (contrary to such
fatalists as G.W.F. Hegel and Karl
Marx, who would have history march
on inexorably forward and upward).
The Earth bulges with the remains of
countless extinct civilizations, cultures
which “lost the moral fitness to survive,”
in LaRouche’s words. Their study is the
never-ending business of archeology.
Similarly, much of the business of so-
called “anthropology,” is the study of
failed cultures which, rather than simply
disappearing to the last man, instead
collapsed down to a mere handful of
pathetic, illiterate and naked savages.
We are all now rapidly on our way,
worldwide, to that latter end.

Therefore, the new Renaissance for
which we fight, is not simply a desir-
able, good thing. It is rather, the only
alternative to another Dark Age—this
time not simply European, but world-
wide—which, if it happens, will eclipse
civilization for many decades, and bring
about the collapse of world population
levels to several hundred million, or
fewer. It will mean death for the great
majority, and unimaginable suffering
and degradation for the relatively few
survivors.

The trigger for this collapse, if it is
permitted to occur, will be the vaporiza-
tion of the world financial system, pre-
saged by the present so-called “Asia cri-
sis.” But the real cause is neither eco-
nomic in the usual sense, nor financial,
nor anything even remotely like that. It
is the worldwide collapse of culture and
morality, especially visible during the
past thirty years, documented so pas-
sionately by these authors in the micro-

cosm of university so-called “classical
studies.”

The microcosm reflects the macro-
cosm. The putrefaction, reminiscent of
some stories of E. A. Poe, which Hanson
and Heath depict in the corners of our
universities, reflects, alas, the condition
of civilization overall. Once this is
understood, dedicated teachers to the
few, such as these authors, are of necessi-
ty called to be the “shepherds” to the
“sheep” of the wider world, including
the sheep who are heads of state and
high officials. To save them from the
destruction to which they have otherwise
doomed themselves, by their own folly.

Universal Classical Education

From this standpoint—which is the true
context of the “larger American renais-
sance,” from which any discussion of
academic reforms must proceed—one of
the most serious errors in Who Killed
Homer, is the contention that only some
students should be destined for a univer-
sity (i.e., Classical) education, while the
rest should learn a skill or trade instead.
(Admittedly, the authors regard this as a
temporary expedient; but, it is a serious
mistake nonetheless.)

To discuss it, first, on the less-impor-
tant, narrowly economic level: Modern
economy involves ever-more-rapid
supercession of revolutionary, new
products and processes, by still more
revolutionary and newer ones. Unless
we are going back to the day of the
horse and buggy, as some would have us
do, the “skill” each labor-force entrant
most requires, is that of rapidly master-
ing new principles: Just what a good
Classical education best provides.

But, there is a worse error still in the
suggestion, that “[w]ith a skill and a job
[i.e., absent a Classical education], each
individual immediately becomes a func-
tional member of the community, with
all of the obligations and duties this
entails.” This was indeed true, in a sense,
throughout the greatest part of human
history, when the functions, “obligations
and duties” of the ninety-five percent of
the human race who were essentially
human cattle, were nothing but obse-
quious obedience to every whim of their
“betters.” But Solon of Athens, Nicolaus

of Cusa, and Benjamin Franklin and the
rest of our American Founding Fathers,
gave us the different and better idea of
the republic. In a republic like ours, the
citizen’s duty of responsibly electing our
leaders, requires that he or she have the
knowledge to judge among the princi-
pled bases of alternative, proposed poli-
cies—even while not knowing all their
details. Meaningful citizenship in a
republic, thus requires a Classical educa-
tion, one which results in the student’s
reproducing, within and for his own
mind, an ordered sequence of Platonic
ideas.

In today’s circumstance of last-ditch
defense of Western Culture, this ques-
tion is not that of a timeless, abstract
study of comparative forms of educa-
tion. We require a revolution, and that
very quickly. Of the American, not the
Bolshevik variety: in which enough
leading citizens’ depth of knowledge of,
and passion for civic values, will move
them to stake “their lives, their fortunes,
and their sacred Honor,” in a battle for
the survival of the priceless accomplish-
ments of Western Civilization.

Just as it was over two hundred years
ago, and again during the American
Civil War, that is once again the ques-
tion of Classical education today.

—Tony Papert
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• Alexander's city-building: 
a few of the forty ancient 
cities named Alexandria 

The Egyptian government has 
announced that the interna

tional project to rebuild the old 
library of Alexandria will be com
pleted in 1998. Construction was 
begun in June 1988, when Egyptian 
President Mubarak laid the build
ing foundations, accompanied by 
the director-general of UNESCO. 

Havi_ng conquered Egypt, 
Alexander the Great undertook to 
found a city bearing his name, 
which was to be a commercial 
crossroads between East and West, 
as well as a cultural and scientific 
center for the world. After 
Alexander's death in 323 B.C., the 
city was developed by the ruling 
Ptolemies. 

The great library became the 

Route of Alexander's Conquests, 334-323 B.C. 

ARABIA 

Indian Ocean 

The Library of Alexandria 
Will Be Reborn 

center of learning for over nine 
hundred years, and, in particular, a 
repository of the great accomplish
ments of Classical Greece, attracting 
the greatest minds of Hellenistic 
culture. And, because of the library, 
Alexandria radiated the heritage of 
Platonist philosophy and science 
throughout the Greek-speaking 
Mediterranean, in the years 
surrounding the birth of Christ. 

Governments and institutions 
from around the world have 
contributed magnificent items for 

the center: a complete microfilm 
record of the priceless Arabic 
manuscripts in the Escorial Library 
in Spain; a copy of the Bible printed 
by Gutenberg, donated by France; a 
rare copy of the Holy Quran, which 
dates from the year 1278 of the 
Hijra, from the city of Starazaogra, 
Bulgaria. The revived library 
should become a center of learning 
and research, with emphasis 
on the civilizations of ancient 
Egypt, Greece, and the Eastern 
Mediterranean. 

Architectural model of the new Alexandria library, to be completed during 1998. 

Left: Leading intellects associated with the ancient library (top to bottom): the poet 

and librarian Callimachus, comic playwright Philemon, geometer Euclid. 
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How Gauss Determined 

The Orbit of Ceres 

T
he 1801 determination of the orbit of the asteroid 

Ceres by the mathematician Carl F. Gauss, 

marked a triumph for the Platonic method in the 

sciences, over the sterile neo-Aristoteleanism of 

Newton, Descartes, and Leonhard Euler. The general 

problem-in Gauss's words, 'to determine the orbit of 

a heavenly body, without any hypothetical assumption, 
from observations not embracing a great period of 

time,' required a solution that both exposed the 

fraudulent-axiomatic assumption of 'linearity in the 

small' championed by the enemies ofG.W. Leibniz, 

and opened the way for the revolution in geometry 

and physics wrought by Gauss's student Bernhard 

Riemann, which sparked the scientific advances of the 

20th century. 

Mastery of such concepts is not academic. As the world 

plunges into a civilizational crisis comparable only to 

that of the 14th-century New Dark Age, the only 

proven remedy is to foster those powers of cognitive 

reason, which distinguish man as uniquely created in 

the image of God (imago Dei). To learn how to think, 

students must begin by replicating, in their own 

minds, the great discoveries of the past. Thus, shall we 

gain the cognitive powers needed to generate and 

assimilate the new ideas required for civilization to 

advance into the Renaissance of the 21st century. 

o 
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In a strategic commentary, Lyndon H. LaRouche, Jr., writes: 'Although 
Lenin and Trotsky erred greatly, they are not to be regarded as anything less 
than highly qualified .professional revolutionaries, professional makers of 
history. They were not half as misguided, or ignorant, as those foolish 
statesmen, who approach the present global situation with the delusion that 
the immediate months ahead are not a revolutionary interval of history. 
We see this crisis as the opportunity to defeat that religious quality of 
monetarist fervor which is presently the greatest threat to civilization.' 
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