
π2 � (t2−t1) � (t3–t2) T123 � 2 � ____________________ � T13
. (10)

r2
3

Recall the original motive for this investigation, which
was to “get a grip” on the relationship between the sec-
toral area  S13 and the triangle T13. What we can say now,
by way of a crucially useful approximation, is the follow-
ing. Since T123 makes up nearly the whole difference
between the triangle T13 and the orbital sector S13 (Fig-
ure 14.12), 

S13 = (to a first order of approximation) T13 + T123 ,

or, stating this in terms of a ratio,

S13 T123____ = (very nearly)  1 + _____ .
T13 T13

On the other hand, we just arrived in Equation (10)
at an approximation for T123, in which T13 is a factor.
Applying that estimate, we conclude that

S13 π2 � (t2−t1) � (t3–t2)____ � 1 + � 2 � ___________________ � .
T13 r2

3

The hard work is over. We have arrived at the crucial
“correction factor,” which Gauss supplied to complete his
first-approximation determination of Ceres’ position. For
some one hundred fifty years, following the publication
of Gauss’s Theory of the Motion of the Heavenly Bodies
Moving about the Sun in Conic Sections, astronomers
around the world have used it to calculate the orbits of
planets and comets. All that remains to be done, we shall
accomplish in the next chapter.

—JT
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CHAPTER 15

Another Battle Won
My dear friend, you have done me a great favor by your
explanations and remarks concerning your method. My lit-
tle doubts, objections, and worries have now been removed,
and I think I have broken through to grasp the spirit of the
method. Once again I must repeat, the more I become
acquainted with the entire course of your analysis, the
more I admire you. What great things we will have from
you in the future, if only you take care of your health!

—Letter from Wilhelm Olbers to Gauss,
Oct. 10, 1802

We now have the essential elements, out of
which Gauss elaborated his method for deter-
mining the orbit of Ceres. Up to this point,

the pathway of discovery has been relatively narrow;
from now on it widens, and many alternative approaches
are possible. Gauss explored many of them himself, in
the course of perfecting his method and cutting down on
the mass of computations required to actually calculate
the elements of the orbit. The final result was Gauss’s
book, Theory of the Motion of the Heavenly Bodies Moving
about the Sun in Conic Sections, which he completed in
1808, seven years after his successful forecast for Ceres.
As Gauss himself remarked, the exterior form of the
method had evolved so much, that it barely resembled
the original. Nevertheless, the essential core remained
the same.

We have tried to follow Gauss’s original pathway as
much as possible. That pathway is sketched in an early
manuscript entitled, Summary Overview of the Method
Used To Determine the Orbits of the Two New Planets (the
title refers to the asteroids Ceres and Pallas). The Sum-
mary Overview was published in 1809, but is probably
close to, or even identical with, a summary that Gauss
prepared for Olbers in the Fall of 1802. The latter docu-
ment was the subject of several exchanges of letters back
and forth between the two astronomers, where Olbers
raised various questions and criticisms, and challenged
Gauss to explain certain features of the method. Fortu-
nately, that correspondence, which provides valuable
insights into Gauss’s thinking on the subject, has been
published. We shall quote from it in the last chapter, the
stretto.

Our goal now is to complete Gauss’s method for con-
structing a first approximation to the orbit of Ceres from
three observations.

In earlier discussions, we discovered a method for
reconstructing the second of the three positions of the
planet, P2, from the values of two crucial “coefficients”—
namely, the ratios of triangular areas T12 : T13 and
T23 : T13—together with the data of the three observations
and the known motion of the Earth. The difficulty with



74

our method lay in the circumstance, that the values of
required coefficients cannot be adduced from the data in
any direct way.

Our initial response was to use, instead of the triangu-
lar areas, the corresponding orbital sectors whose ratios
S12 : S13 and S23 : S13 are known from Kepler’s “area law”
to be equal to the ratios of the elapsed times, t2−t1 : t3−t1
and t3−t2 : t3−t1. Unfortunately, the magnitude of error
introduced by using such a crude approximation for
the coefficients, renders the construction nearly use-
less. Accordingly, we spent that last three chapters
working to develop a method for correcting those val-
ues, to at least an additional degree or order of magni-
tude of precision.

The immediate fruit of that endeavor, was an estimate
for the value of the ratio S13 : T13. As it turned out, S13 is
larger than T13 by a factor approximately equal to

π2 � (t2−t1) � (t3–t2)1 + � 2 � ___________________ � .r2
3

Let us call that magnitude, slightly larger than one,
“G” (for Gauss’s correction). So, S13 � G � T13. What
follows concerning the ratios T12 : T13 and T23 : T13?

We already determined, that the main source of
error in replacing T12 : T13 (for example) by the corre-
sponding ratio of orbital sectors, S12 : S13, comes from
the discrepancy between the denominators. The percent-
age error arising from the discrepancy between the
numerators is an order of magnitude smaller. We can
now correct the discrepancy in the denominators, at
least to a large extent. S13 being larger than T13 by a fac-
tor of about G, means that the quotient of any magni-
tude by T13, will be larger, by that same factor, than the
corresponding quotient of the same magnitude by S13.
In particular,

T12 T12____ � G � ____ .
T13 S13

If, at this point, we were to replace T12 by S12 in the
numerator, we would thereby introduce an error, an
order of magnitude smaller than that which we have just
“corrected” using G. Granting that smaller margin of
error, and carrying out the mentioned substitution, we
arrive at the estimate

T12 S12 t2−t1____ � G � ____ = G � ______ . 
T13 S13 t3−t1

For similar reasons,

T23 t3−t2____ � G � _____ .
T13 t3−t1

Recall, that the ratios of the elapsed times constituted
our original choice of coefficients for the construction of
Ceres’ position P2. Our new values are nothing but the
same ratios of elapsed times, multiplied by Gauss’s “cor-
rection factor” G. If our reasoning is valid, this simple
correction should be enough to yield at least an order-of-
magnitude improvement over the original values. By
applying the new, corrected coefficients in our geometri-
cal method for reconstructing the Ceres position P2 from
the three observations, we should obtain an order-of-
magnitude better approximation to the actual position.
Gauss verified that this is indeed the case.

The story is not yet over, of course. We still have the
successive tasks: 

(i) To determine the other two positions of Ceres, P1
and P3; 

(ii) To calculate at least an approximate orbit for
Ceres; and 

(iii) To successively correct the effect of various
errors and discrepancies, until we obtain an orbit fully
consistent with the observations and other boundary
conditions, taking possible errors of observation into
account.

We Face a Paradox
But before proceeding, haven’t we forgotten something?
Gauss’s factor G is not a fixed, a priori value, but depends
on the unknown sun-Ceres distance r2. We seem to face
an unsolvable problem: we need r2 to compute G, but we
need G to compute the Ceres position, from which alone
r2 can be determined. (Figure 15.1)

As a matter of fact, this kind of self-reflexivity is typical
for Gauss’s hypergeometrical domain. Far from constitut-
ing the awesome barrier it might seem to be at first
glance, the self-reflexive character of hypergeometric
and related functions, is key to the extraordinary simpli-
fication which the analysis situs-based methods of Gauss,
Riemann, and Cantor brought to the entire non-algebra-
ic domain. These functions cannot be constructed “from
the bottom up,” but have to be handled “from the top
down,” in terms of the characteristic singularities of a
self-reflexive, self-elaborating complex domain. A
“secret” of much of Gauss’s work, is how that higher
domain efficiently determines all phenomena in the low-
er domains, including in the realm of arithmetic and
visual-space geometry.

It was from this superior standpoint, that Gauss devel-
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oped a variety of rapidly convergent numerical series for
practical calculations in astronomy, geodesy, and other
fields. Using those series, we can compute the values of
hypergeometric and related functions to a high degree of
precision. However, the numerical properties of the series
coefficients, their rates of convergence, their interrela-
tionships, and so on, are all dictated “from above,” by the
analysis situs of the complex domain—the same principle
which is otherwise exemplified by Gauss’s work on bi-
quadratic residues. Although an explicit formal develop-
ment of hypergeometric functions is not necessary for
Gauss’s original solution, the higher domain is always
present “between the lines.”

In the present case, Gauss’s practical solution amounts
to “unfolding the circle” of the reflexive relationship
between r2 and G, into a self-similar process of successive
approximations to the required orbit, analogous to a
Fibonacci series.

The first step, is to select a suitable initial term, as a first
approximation. For the case of Ceres we might conjecture,
as von Zach, Olbers, and others did at the time, that the
orbit lies in a region approximately midway between the
orbits of Mars and Jupiter. That means taking an r2 close
to 2.8 A.U. The corresponding value of G, computed with
the help of this value and elapsed times of about 21 days
between the three observations, comes out to about 1.003.

Another option, independent of any specific conjec-
ture concerning the position of the orbit, would be to car-
ry through our construction for P2 without Gauss’s correc-
tion, and to compute the Ceres-sun distance r2 from the
rough approximation for the Ceres position.

Having selected an initial value for r2, the next step
is to check, whether it is consistent with the self-reflex-
ive relationship described above. Starting from the pro-
posed value of r2 and the elapsed times, calculate the
corrective factor G from the formula stated above; then,
use that G to determine a set of “corrected” coefficients,
and construct from those a new estimate for Ceres’
position P2.

Now, compare the distance between that position and
the sun, with the original value of r2. If the two values
coincide to within a tolerable error, then we can regard the
entire set of r2, P2, G, together with the associated coeffi-
cients, as consistent and coherent, and proceed to deter-
mine an orbit from them. If the two values of r2 differ sig-
nificantly, then we know the posited value of r2 cannot be
correct, and we must modify it accordingly. A mere trial-
and-error approach, although feasible, is extremely labori-
ous. Much better, is to “close in” on the required value, by
successive approximations which take into account the
functional dependence of the initial and calculated values,
and in particular the rate of change of that dependence. By
this sort of analysis, which we shall not go into here,
Gauss could obtain the desired coincidence (or very near
coincidence) after only a very few steps.

How To Find the Other Two 
Positions of Ceres
Let us move on to the next essential task. Suppose we
have succeeded in obtaining a position P2 and corre-
sponding distance r2 which are self-consistent with our
geometrical construction process, in the sense indicated
above. How can we determine the other two positions of
Ceres, P1 and P3?

As we might expect, the necessary relationships are
already subsumed by our original construction. Readers
should review the essentials of that construction, with the
help of the relevant diagrams. Recall, that P2 was
obtained as the intersection of a certain plane Q with the
“line of sight” L2—the line running from the Earth’s sec-
ond position E2 in the direction defined by the second
observation. The plane Q was determined as follows.
First, we constructed point F, in the plane of the Earth’s
orbit, according to the requirement, that F has the same
relationship to the Earth’s positions E1 and E3, in terms of
the “parallelogram law” of decomposition of displace-

E1

E2

E3

P3

P2
P1

r2

O

FIGURE 15.1. A self-reflexive paradox. We need r2 to
compute Gauss’s “correction factor” G, but we need G to
compute P2 , from which r2 is derived.
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ments, as P2 has to P1 and P3. (Figure 15.2a) For that
purpose, we chose points F1 and F3, located on the lines
OE1 and OE3, respectively, such that

OF1 T23_____ = the estimated value of ____ ,
OE1 T13

and

OF3 T12_____ = the estimated value of ____ .
OE3 T13

We then constructed the point F as the endpoint of the
combination of the displacements OF1 and OF3—i.e., the
fourth vertex of the parallelogram whose other vertices
are O, F1, and F3.

Next, we drew the parallels through F, to the other
two “lines-of-sight” L1 and L3. (Figure 15.2b) Q is the
plane “spanned” by those parallels through F, and the

intersection of plane Q with L2 is our adduced position
for P2. We showed, that this reconstruction of the posi-
tion of Ceres would actually coincide with the real one,
were it not for a margin of error introduced in estimating
the coefficients T12/ T13 and T23 / T13 , as well as in Piazzi’s
observations themselves. We also found a way to reduce
the former error, using Gauss’s correction.

Now, to find P1 and P3, look more closely at the rela-
tionships in the plane Q. Call the parallels to the lines L1
and L3, drawn through F, L1′ and L3′, respectively. (Fig-
ure 15.3) On each of the latter lines, mark off points P1′
and P3′, such that the distance FP1′ is equal to the Earth-
Ceres distance E1P1, and similarly FP3′ is equal to E3P3.
To put it another way: transfer the segments E1P1 and
E3P3 from the base-points E1 and E3, to F, without alter-
ing their directions. 

What is the relationship of P2, to the points F1, P1′,
and P3′? From the “hereditary” character of the entire
construction, we would certainly expect the same coeffi-
cients to arise here, as we adduced for the relationship of
P2 to O, P1, and P3, and used in the construction of F. A
bit of effort, working through the combinations of dis-

L1

L1′

L3

P2

L3′

E2

E3

E1

F

P1

P3

F3

F1

O

L2

P1′

P3′

FIGURE 15.3. Having determined the position of P2 , we
now set out to locate P1 and P3 , by determining P1′ and
P3′ in plane Q at F.

O

E2
E1

E3 F3

F1
F

L3

L2

E3

E2

L1

F

P2 !

E1

plane Q

L3′
L1′

(a)

(b)

FIGURE 15.2. (a) We constructed point F using the
“parallelogram law” of displacements. (b) Once
constructed, plane Q at F must contain P2 as the point of
intersection with line L2 .



placements involved, confirms that expectation.
This leads us to a very simple construction for P1 and

P3. All we must do, is to decompose the displacement
FP2—a known entity, thanks to our construction—into a
combination of displacements along L1′ and L3′. In other
words, construct points Q1′ and Q3′, along those lines, such
that FP2 is the sum of the displacements FQ1′ and FQ3′, in
the sense of the parallelogram law. (Figure 15.4) ( Q1′ and
Q3′ are the “projections” of P2 onto L1′ and L3′, respective-
ly.) Now, P1′ and P3′ are not yet known at this point, but
the “hereditary” character of the construction tells us, as
we remarked above, that the values of the ratios

FQ1′ FQ3′_____ and _____ ,
FP1′ FP3′

are the same as the coefficients used in the construction of
P2, i.e., the estimated values of T23 / T13 and T12/ T13 . Aha!
Using those ratios, we can now determine the distances
FP1′ and FP3′. We have only to divide FQ1′ by the first
coefficient, to get FP1′, and divide FQ3′ by the second coef-
ficient, to get FP3′. That finishes the job, since the lengths
we wanted to determine—namely E1P1 and E3P3—are the
same as FP1′ and FP3′ respectively, by construction.

Finally, by marking off these Earth-Ceres distances
along the “lines of sight” defined by Piazzi’s observations,
we construct the positions P1 and P3, themselves. Another
battle has been won!

—JT
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CHAPTER 16

Our Journey Comes to an End

In the last chapter, we succeeded in constructing at
least to a first approximation, all three of the Ceres
positions. Given the three positions P1, P2, P3 what

could be easier than to construct a unique conic-section
orbit around the sun, passing through those positions?
We can immediately determine the location of the plane
of Ceres’ orbit, and its inclination relative to the ecliptic
plane, by just passing a plane through the sun and any
two of the positions.

To determine the shape of the conic-section orbit,
apply our conical projection, taking the horizontal plane
to represent the plane of Ceres’ orbit. The three points
U1, U2, U3 on the cone, which project P1, P2, P3, deter-
mine a unique plane passing through all three in the con-

ical space. The intersection of that plane with the cone is
a conic section through U1, U2, U3; and the projection of
that curve onto the horizontal plane, is the unique conic
section through P1, P2, P3, with focus at the sun. (Figure
16.1)

As simple as this latter method appears, Gauss reject-
ed it. Why? In the case of Ceres, P1, P2, P3 lie close
together. Small errors in the determination of those three
positions, can lead to very large errors in the inclination
of the plane passing through the corresponding points
U1, U2, U3 on the cone. The result would be so unreliable
as to be useless as the basis for forecasting the planet’s
motion.

To resolve this problem, Gauss chooses a different tac-

FIGURE 15.4. Work “backwards” from P2 to the positions of
P1′ and P3′. “Project” P2 onto the axes L1′,L2′, and use the
fact, that P1′,Q1′ and P3′,Q3′ are related by the same coeffi-
cient as P1 ,Q1 and P3 ,Q3 .



tic. He leaves P2 aside for the moment, and proceeds to
determine the orbit from P1 and P3 and the elapsed time
between them. Gauss developed a variety of methods for
accomplishing this. The simplest pathway goes via
Gauss’s orbital parameter, using the “area law.” Remem-
ber, the value of the half-parameter corresponds to the
“height” of the point V on the axis of the cone, where the
axis is intersected by the plane defining the orbit. If we
know the half-parameter, then that gives us a third point
V, in addition to U1 and U3, with which to determine the
position of the intersecting plane. Unlike P2, the point O
lies far from P1, and P3; the corresponding points V, U1,
U3 on the cone are also well-separated. As a result, the
position of the plane passing through those three points is
much less sensitive to errors in the determination of their
positions, than in the earlier case.

How do we get the value of the half-parameter from
two positions and the elapsed time between them?
According to the Gauss-Kepler “area law,” the area of
the orbital sector between P1 and P3, i.e., S13, is equal to
the product of (the elapsed time t3−t1) � (the square root
of the half-parameter) � (the constant π). The elapsed
time is already known; if in addition we knew the area of
the sector S13, we could easily derive the value of the
orbital parameter.

Another self-reflexive relationship! The exact value
of S13 depends on the shape of the orbital arc between P1
and P3; but to know that arc, we must know the orbit.
To construct the orbit, on the other hand, we need to
know the orbital parameter, which in turn is a function
of S13.

Again, we can solve the problem using Gauss’s
method of successive approximations. The triangular
area T13, which we can compute directly from the posi-
tions P1 and P3, already provides a first rough approxi-
mation to S13. Better, we use G � T13, where G is Gauss’s
correction factor, calculated above. From such an estimat-
ed value for S13, calculate the corresponding value of the
orbital parameter. Next, apply our conical representation
to constructing an orbit, using an approximation of the
half-parameter, namely, the value corresponding to that
estimated value of S13.

Finally, with the help of Kepler’s method of the
“eccentric anomaly,” or other suitable means, calculate
the exact area of the sector S13 for that orbit. If this value
coincides with the value we started with, our job is done.
Otherwise, we must modify our initial estimate, until
coincidence occurs. Gauss, who abhorred “dead mechani-
cal calculation,” developed a number of ingenious short-
cuts, which drastically reduce the number of successive
approximations, and the mass of computations required.

At the end of the process, we not only have the value
of the orbital parameter, but also the orbit itself.

How To Perfect the Orbit
This completes, in broad essentials, Gauss’s construction
of a first approximation to the orbit of Ceres, using only
three observations. Gauss did not base his forecast for
Ceres on that first approximation, however. Remember,
everything was based on our approximation to the Ceres
position P2; our construction of P1 and P3, and the orbit
itself, is only as good as P2.

Gauss devised an array of methods for successively
improving the initially constructed orbit, up to an aston-
ishing precision of mere minutes or even seconds of arc in
his forecasts. Again, the key is the coherence and self-
reflexivity of the relationships underlying the entire
method.

The gist of Gauss’s approach, as reported in the “Sum-
mary Overview,” is as follows. How can we detect a dis-
crepancy between the real orbit and the orbit we have con-
structed? By the very nature of our construction, the first
and third observations will agree precisely with the calculated
orbit: P1 and P3 lie on the calculated orbit as well as the lines
of sight from E1 and E3, and the elapsed time between
them on our calculated orbit will coincide with the actual
elapsed time between the first and third observations.

The situation is different for the intermediate position
P2. If we calculate the position P2 based on the proposed
orbit—i.e., the position forecast at time t2—we will gen-
erally find that it disagrees by a more or less significant
amount, from the “P2” we originally constructed. This
“dissonance” tells us that the orbit is not yet correct. In
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FIGURE 16.1. The elliptical orbit is easily determined from
P1 ,P2 ,P3 , by drawing the plane through the corresponding
points U1 ,U2 ,U3 (whose heights are the distances r1 ,r2 ,r3
now known). However,Gauss rejected that direct method as
being too prone to error when P1 ,P2 ,P3 are close together.
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that case, we should gradually modify our estimate for
P2, until the two positions coincide. Since P2 must lie on
the line-of-sight L2, the Earth-Ceres distance is the only
variable involved.

Again, trial-and-error is feasible in principle, but
Gauss elaborated an array of ingenious methods for suc-
cessive approximation. Once he had arrived at an orbit
which matched the three selected observations in a satis-
factory manner, Gauss compared the orbit with the oth-
er observations of Piazzi, taking into account the vari-

ous possible sources of error. Finally, Gauss could deliv-
er his forecast of Ceres’ motion with solid confidence
that the new planet would indeed be found in the orbit
he specified.

Here our journey comes to an end—or nearly. For
those readers who have taken the trouble to work
through Gauss’s solution with us, congratulations! Next
chapter, we conclude with a stretto, on the issue of “non-
linearity in the small.”

—JT

CHAPTER 17

In Lieu of a Stretto

In this closing discussion, we want to take on a famous
bogeyman, called “college differential calculus.”
Much more can and should be said on this, but the

following should be useful for starters, and fun, too.
Readers may have noticed that Gauss made no use at

all of “the calculus,” nor of anything else normally
regarded as “advanced mathematics,” in the formal sense.
Everything we did, we could express in terms of Classical
synthetic geometry, the favorite language of Plato’s Acad-
emy. Yet Gauss’s solution for Ceres embodied something
startlingly new, something far more advanced in sub-
stance, than any of his predecessors had developed.
Laplace, famed for his vast analytical apparatus and tech-
nical virtuosity, was caught with his pants down.

Gauss’s method is completely elementary, and yet high-
ly “advanced,” at the same time. How is that possible?

Far from being a geometry of fixed axioms, such as
Euclid’s, Platonic synthetic geometry is a medium of
metaphor—a medium akin to, and inseparable from the
well-tempered system of musical composition. So, Gauss
uses Classical synthetic geometry to elaborate a concept of
physical geometry, which is axiomatically “anti-Euclid-
ean.” A contradiction? Not if we read geometry in the
same way we ought to listen to music: the axioms and
theorems do not lie in the notes, but in the thinking
process “behind the notes.”

Through a gross failure of our culture and educational
system, it has become commonplace practice to impose
upon the domain of synthetic geometry, the false,
groundless assumption of simple continuity. It were hard
to imagine any proposition, that is so massively refuted
by the scientific evidence! And yet, if we probe into the
minds of most people—including, if we are honest,
among ourselves—we shall nearly always discover an
area of fanatically irrational belief in simple continuity

and, what is essentially the same thing, linearity in the
small. Here we confront a characteristic manifestation of
oligarchical ideology.

Take, for example, the commonplace notion of circle,
generated by “perfectly continuous” motion. Our imagi-
nation tells us that a small portion of the circle’s circum-
ference, if we were to magnify it greatly, would look
more flat, or have less curvature, than any larger portion
of the circumference. In other words: the smaller the arc,
the smaller the net change of direction over that portion of
the circumference.

Similarly, the standpoint of “college differential calcu-
lus” regarding any arbitrary, irregularly shaped curve, is
to expect that the irregularity will decrease, and the curve
will become simpler and increasingly “smooth,” as we
proceed to examine smaller and smaller portions of it.
This is indeed the case for the imaginary world of college
calculus and analytical geometry, where curves are
described by algebraic equations and the like. But what
about the real world? Is it true, that the adducible, net
change in direction of a physical process over any given inter-
val of space-time, becomes smaller and smaller, as we go from
macroscopic scale lengths, down to ever smaller intervals of
action?

Well, in fact, exactly the opposite is true! As we pursue
the investigation of any physical process into smaller and
smaller scale-lengths, we invariably encounter an increas-
ing density and frequency of abrupt changes in the direc-
tion and character of the motion associated with the
process. Rather than becoming simpler in the small, the
process appears ever more complicated, and its discontin-
uous character becomes ever more pronounced. Our
Universe seems to be a very hairy creature indeed: a “dis-
continuum,” in which—so it appears—the part is more
complex than the whole.



80

SS

S

•

Annual

Equinoctial

D
a
ily

FIGURE 17.1. A metaphorical
representation of the concept of
“curvature in the small,” using

astronomical cycles. (a) The three
astronomical cycles—the daily rotation of
the Earth on its axis, the annual elliptical
orbit of the Earth around the sun, and the

equinoctial cycle (precession of the
equinoxes)—can be represented mathematically

by the continuous curve traced out by a circle
rolling along a helical path on a torus. 

(b) Each rotation of the circle represents the daily
rotation of the Earth on its axis. (c) 365.2524 turns
comprise a helical loop representing one rotation of

the Earth around the Sun; 26,000 helical loops around
the torus represent one equinoctial cycle.

Here this curve is shown in a series of frames, each
showing a more close-up view. (d) The curvature at every

interval is a combination of the curvature of all three
astronomical cycles, no matter how small.

(a) (c)

(b)

(d)



‘Turbulence in the Small’

The existence of this discontinuum, this “turbulence in
the small” of any real physical process, confronts us with
several notable paradoxes and problems.

Firstly, what is the meaning of that “turbulence”? Why
does our Universe behave that way? How does that char-
acteristic—reflecting an increasing density of singulari-
ties in the “infinitesimally small”—cohere with the
nature of human Reason? Why is a “discontinuum” of
that sort, a necessary feature of the relationship of the
human mind, as microcosm, to the Universe as a whole?

Another paradox arises, which may shed some light
on the first one: When we carry our experimental study
of a process down to the microscopic level, we find it more
and more difficult to identify those features, which corre-
spond to the macroscopic ordering that was the original
object of our investigation.

The analogy of astronomic cycles, which we have
learned something about through the course of our inves-
tigation, might help us to think about the problem in a
more rigorous way. Instead of “macroscopic ordering,”
let us say: a (relatively) long cycle. By the nature of the
Universe, no single cycle exists in and of itself. All cycles
interact, at least potentially; and the existence of any giv-
en cycle, is functionally dependent on a plenitude of
shorter cycles, as well as longer cycles. Now we are ask-
ing the question: how does a given long cycle manifest
itself on the level of much shorter cycles? At first glance,
the action associated with the long cycle becomes more
and more indistinct, and finally “infinitesimal,” as we
descend to the length-scales characteristic of shorter and
shorter cycles.

(More precisely—to anticipate a key point—we reach
critical scale-lengths, below which it becomes impossible
to follow the trace of the “long cycle” within the “short
cycles,” unless we change our own axiomatic assump-
tions.)

We encounter this sort of thing all the time in astrono-
my. On the time-scale of the Earth’s daily rotation, the
yearly motion of the sun appears as a very small deviation
from a circular pathway. To the ancient observer, the
effect of that deviation becomes evident only after many
day-cycles. Similarly, recall the provocative illustration
commissioned by Lyndon LaRouche, for the seemingly
“infinitesimal” action of the approximately 25,700-year-
long equinoctial cycle (precession of the equinoxes) with-
in a one-second interval. (Figure 17.1)

The simplest sort of geometrical representation of
such infinitesimal long-cycle action, tends to understate
the problem: Suppose we did not know the existence or
identity of a given long cycle. How could we uncover it

by means of measurements made only on a much smaller
scale? Won’t the infinitesimally faint “signal” of the
longer cycle, be hopelessly lost amidst the turbulent
“noise” of the shorter cycles? Already in the case of
Piazzi’s observations, the true motion of Ceres was com-
pletely distorted by the effect of the Earth’s motion. What
would we do, if the cycle we were looking for were
mixed together with not one, but a huge array of other
cycles?

Here an unbridgeable chasm separates the method of
Gauss, from that of Laplace and his latter-day followers.
Just as Laplace ridiculed Gauss’s attempt to calculate the
orbit of Ceres from Piazzi’s observations, calling it a
waste of time, so Laplace’s successors, John Von Neu-
mann,  Norbert Wiener, and John Shannon, denied the
efficient existence of long cycles, and sought to degrade
them into mere “statistical correlations.”

The point is, we cannot solve the problem, as long as
we avoid the issue of axiomatic change, and tacitly
assume a simple commensurability between cycles which
is tantamount to “linearity in the small.”

The Issue of Method
Let’s glance at some examples, where this issue of method
arises in unavoidable fashion.

1. The paradoxes of any mechanistic theory of sound.
“Standard theory,” going back to Descartes, Euler,
Cauchy, et al., treats air as a homogenous, “elastic
medium,” within which sound propagates as longitu-
dinal waves of alternate compression and decompres-
sion of the medium. Descartes’ “homogeneous elastic
medium” is a fairy tale, of course. We know that the
behavior of air depends on the existence of certain elec-
tromagnetic micro-singularities, called molecules. We
can also be certain, that whatever sound is exactly, its
propagation depends in some way on the functional
activity of those molecules. At this point Boltzmann
introduced the baseless assumption, only superficially
different from that of Descartes and Euler, that the
molecules are inert “simple bodies”—interacting only
by elastic collisions in the manner of idealized tennis
balls.

Experimental investigations leave little doubt, that
the molecules in air are constantly in a state of a very
rapid, turbulent motion at hypersonic speeds, and that
events of rapid change of direction of motion take
place among them, which one might broadly qualify
with the term “collisions.” A single molecule will typi-
cally participate in hundreds of millions or more such
events each second. On the other hand, those “colli-
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sions” are anything but simple; they are vastly compli-
cated electromagnetic processes, whose nature Boltz-
mann conveniently chose to ignore.

Push the resulting, simplistic picture to the limits of
absurdity. Imagine observing a microscopic volume of
the air, one inhabited by only a few molecules, on a
time scale of billionths of a second. Where is the sound

wave? According to statistical method, the energy of
the sound wave passing through any tiny portion of air
is thousands, perhaps millions of times smaller than
that of the turbulent “thermal” motion in a corre-
sponding, undisturbed portion of air. What, then, is the
sound wave for an individual air molecule, travelling
at hypersonic speed, in the short time interval between
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successive collisions? Does the sound wave exist at all,
on that scale? According to Boltzmann, it does not: a
sound wave is nothing but a statistical correlation—a
mathematical ghost!

2. As implied, for example, by so-called photon effects,
light is not a simple wave. Its propagation (even in a
supposed “vacuum”) surely involves vast arrays of indi-
vidual events on a subatomic scale. But standard quan-
tum physics denies there is a strictly lawful relationship
between the propagation of a light “wave” and the
behavior of individual photons. Is “light” nothing but a
statistical correlation?

3. The characteristic of living processes is self-similar
conical-spiral action. But the functional activity of the
electromagnetic singularities, upon which all known
forms of life depend, is anything but simple and
“smooth” in the way naive imagination would tend to
misread the term, conical-spiral action. Going down to
the microscopic level of intense, abrupt “pulses” of
electromagnetic activity and millions of individual
chemical events each second, how do we locate that
which corresponds to the “long wave” characteristic,
we call “living”?

4. A competent physical economist must keep track of a
large array of cycles, subsumed within the overall
social-reproductive cycle and the long cycle of anti-
entropic growth of the per-capita potential population-
density of the human species: demographic cycles, bio-
logical and geophysical cycles of agricultural and relat-
ed production, production and consumption cycles of
consumer and capital goods market-baskets, industrial
and infrastructural investment/depreciation cycles
interacting with the cycles of technological attrition,
and so forth. (Figure 17.2) Where, within those cycles,
is the causal agent of real economic growth?

5. Look at this from a slightly different standpoint: In
the broad sweep of human history, we recognize a
continuity of cultural development, reflected in
orders-of-magnitude increases in the population
potential of the human species. But that development
is by definition a “discontinuum”: its very measure
and focus is the individual human life, the quantum of
the historical process. Nothing occurs “collectively,” as
a “social phenomenon” excreted by some “Zeitgeist.”
Nothing happens which is not the product of specific
actions of individual human beings (including “non-
actions”), actions bound up with the functions of the
individual personality. Yet on the scale of historical
“long cycles,” a human life is a short moment, with an
abrupt beginning and an abrupt end. If we would take
a microscope to history, so to speak, and examine the

hectic bustling and rushing around of an individual
during his brief, pulse-like interval of existence, would
we see the function which is responsible for the “long
wave” of human development? Were it not as an
“infinitesimal,” compared to the incessant hustling
and bustling of existence? And yet, it is that “infinites-
imal” which represents the most powerful force in the
Universe!

A Well-Tempered ‘Discontinuum’
What lesson can we draw from these examples? The case
of human society is the clincher: The efficient existence of
the long cycle within the shorter cycles, is located unique-
ly in the axiomatic characteristics of action in the small.

Thus, the relationship between short and long cycles
does not exist in the domain of naive sense-certainty; nor
is it capable of literal representation in formal mathe-
matics. To adduce axiomatic characteristics and shifts in
such characteristics, is the exclusive province of human
cognition! What characteristics necessarily apply to the
short cycles, by virtue of their participation in the com-
ing-into-being of a given long cycle? In this context, rec-
ognize the unique potential of the self-consciously cre-
ative individual, by deliberately changing the axioms of
his or her action, to shift the entire “orbit” of history for
hundreds or thousands of years to come! To command
the forces of the Universe, we need not know all the
details and instrumentalities of a given process; we have
only to address its essential axiomatic features.

Gauss’s solution for Ceres is coherent with this point
of view. His is not a simple construction, in the sense of
classroom Euclidean geometry. To solve the problem, we
had to focus on the significance of the fact, that there is
no simple commensurability or linear-deductive relation-
ship between

(i) the angular intervals formed by Piazzi’s observa-
tions from the Earth;

(ii) the corresponding three positions of Ceres in
space;

(iii) the orbital process generating the motion of
Ceres, and the “elements” of the orbit, taken as a com-
pleted entity;

(iv) the Keplerian harmonic ordering of the solar sys-
tem as a whole, subsuming a multitude of astronomical
cycles of incommensurable curvature.

We had to ask ourselves the question: What harmonic
relationship must underlie the array of intervals among
the observed positions of Ceres, by virtue of the fact, that
those apparent positions were generated by the combined
action of the Earth and Ceres (and, implicitly, the rest of
the solar system)? As Kepler emphasized, it is in the har-
monic, geometrical relationships—and not in nominal
scalar magnitudes per se, whether small or large—that
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Applying the Pythagorean Theorem to
the right triangle mfq, we find, that d 2 =
B2 + C2. Since length d from focus f to q
is equal to the semi-major axis A, and
the total length d + d = 2A, we have the
relationship between the semi-major
axis A, the semi-minor axis B, and the

distance C from the focus to the mid-
point m: 

A2 = B2 + C2,
or

C2 = A2 − B2

C = √
_
A
_
2
_
−
___

B
_
2 .
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the axiomatic features of physical action are reflected into
visual space.

The crucial feature, emerging ever more forcefully in
the course of our investigation, was expressed by the
coherence and at the same time the incommensurable
discrepancy, between the triangular areas of the discrete
observations on the one hand, and the orbital sectors on
the other. This is the same motif addressed by Gauss’s

earliest work on the arithmetic-geometric mean. What
shall we call it? A “well-tempered discontinuum”!

As an exercise, we invite the reader to apply the essence of
Gauss’s method concerning the relationship of the various
levels of becoming, to the completed conception of a Classi-
cal musical composition. For, you see, there is yet another
mountaintop!

—JT

major axis

(line of apsides)

minor
axis

d d′

f f′m

q

A

B

m d

d′q

f f′m

d d
B

C m

q

f f′

A and B are the semi-major and semi-
minor axes, and m is the midpoint, or
center, of the ellipse

The characteristic property of the
ellipse: The sum of the distance from an
arbitrary point q on the perimeter, to
the two foci f, f ′, is a constant: 

d + d′ = constant. 

To determine the value of the sum of
distances, consider the case, where q
approaches the point on the major axis
opposite f. At that point, we can see that
the total length d + d ′ will be equal to
the major axis of the ellipse:

d + d ′ = 2A.

APPENDIX

Harmonic
Relationships
In an Ellipse

(a) (b)

(c) (d) (e)

(f)
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f

(g)

(h)

(i) (j)

Another set of characteristic singulari-
ties: a point moving on the ellipse,
reaches its maximum distance (�) from
the focus f, at point a (called the “aphe-
lion”), and its minimum distance (�) at
the point p (called the “perihelion”).

The ellipse spans the intervals between
two characteristic sets of circles: the cir-
cles of radii A,B around the mid-point
of the ellipse, and the circles of radii �,�
around the focus f. What is the relation-
ship between A,B and �, �?

� + � = major axis of ellipse

= 2A

� + �
A = _____ .

2
Also, from the diagram,

C = � − A

� + �
= � − _____

2
� − �= _____ .

2

From figure (f), we have the relation-
ship

A2= B2 + C2  .

From this, it follows that

B2= A2 − C2

� + � � − �= �_____�2
− �_____�2

2 2

�
2 + �2 + 2��= �____________�4

�
2 + �2 − 2��− �____________�4

= ��  !
___

B= √��   .

___
A = (�+�) / 2 and B= √�� are known as the arithmetic and geometric means of
lengths � and �. The combination of the two, inherent in the geometry of the ellipse,
plays a key role in Gauss’s founding of a theory of elliptic and hypergeometric
functions, based on his concept of what is called the “arithmetic-geometric mean.”

B

Cf

A

C
mf

A
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F F#

C

G

(m)

The intimate relationship to the musical
system can be seen, for example, if we
interpret lengths as signifying frequen-
cies (or pitches), and consider the case,
where � = 2� (length � corresponds to
a pitch one octave higher than �). If � is
“middle C,’’ then the pitches corre-
sponding to the various elliptical singu-
larities will be as labelled in the figure.

The interval F-F# is the key singularity
of the musical system.

q

f

q′

(l)

(k)

Still another key singularity, already
presented in the text, is the “orbital
parameter,” which is the length of the
perpendicular qq′ to the major axis at
the focus f. The value Gauss most fre-
quently works with in his calculations,
is the “half-parameter” qf, correspond-
ing to the radius in the case of a circular
orbit.

To calculate the relationship between
the half-parameter (labelled “D”) and
the semi-axes A,B, one way to proceed
is as follows: From the characteristic of
generation of the ellipse,

E + D = 2A (major axis). (A1)

Apply the Pythagorean Theorem to
the right triangle fqf′:

E2 − D2 = (2C)2 ,  or

E2 − D2 = 4C2 .  (A2)

On the other hand, by factoring, we
have

E2 − D2 = (E − D) (E + D)

= (E − D) · 2A (A3)

[by Equation (A1)].
From Equations (A2) and (A3), we

have 

4C2 2C2
E − D = ____ = ____  . (A4)

2A A

Subtracting Equation (A4) from
Equation (A1), we find

2C2
2D = 2A − ____

A

A2 −C2 B2
D = ______ = ___  .

A A

This result becomes much more
intelligible in terms of conical projec-
tions.

Expressed in terms of the aphelion
and perihelion distances, we have

B2 ��D = ___ = ________  
A (� + �) / 2

2�� 2= _____ = _________  .
� + � (1/�) + (1/�)

The latter value is known as the har-
monic mean of � and �.

The Orbital Parameter

2C

q

f f′

D
E

In summary, the semi-major axis,
semi-minor axis, and half-parameter
of an orbit, correspond to the
arithmetic, geometric, and harmonic
means of the aphelion and perihelion
distances. These three means played a
central role in the geometry, music,
architecture, art, and natural science
of Classical Greece
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The Ellipse as a Conical Projection
The underlying harmonic relationships in an ellipse become more intelligible, when we conceive the
ellipse as a kind of “shadow” or projection from a higher, conical geometry. The implications of this are
discussed in Chapter 12; here, we explore only the “bare bones” of the relevant geometrical construction.

Given a horizontal plane and a point f
on that plane, erect a vertical axis at f
and construct a vertical-axis cone hav-
ing its apex at f and its apex angle equal
to 90°.

Note a crucial feature of the relation-
ship between cone and horizontal plane:
for any point q in the plane, the distance
d from f to q, is equal to the “height” h
of the point Q lying perpendicularly
above q on the cone. 

Now, cut the cone with a plane, gener-
ating a conic section. For the present
discussion, consider the case, where the
cutting plane makes an angle of more
than 45° with the vertical axis. In this
case, the conic section will be an ellipse.
Now, project that curve vertically
downward to the horizontal plane. The
result, as we shall verify in a moment, is
an ellipse having f as a focus.

To explore the relationship so generat-
ed, examine the above figure as project-
ed onto a plane passing though the ver-
tical axis and the major axes of the two
ellipses. (That plane makes right angles
with both the cutting plane and the
horizontal plane.)

With a bit of thought, we can see
that the segment f V is equal to the seg-
ment D [in figure (l)], which defines the
half-parameter of the projected ellipse.
(Indeed, the endpoint q of the segment
D on the ellipse, coincides with the posi-
tion of f when the ellipse is viewed
“edge-on” perpendicular to its major
axis; the point Q, on the cone above q,
coincides with V in the projection, and

its height, which is equal to D, coincides
with f V.) Those skillful in geometry
can easily determine the length f V in
terms of � and � from the diagram.

The result is f V = 2�� / (�+�), con-
firming the expression for the half-
parameter which we found by another
method above in (l).

V

�

� �

�

p af

cutting plane
(seen 'edge-on')

horizontal plane
(seen 'edge-on')
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(r)

Looking at the double-conical con-
struction in the “edge-on” view as
before, we can now see why the points
f,f ′ , corresponding to the apex-points
of the cones, coincide with the foci of
the ellipse. Let q represent an arbitrary
point on the perimeter of the projected
ellipse, let Q represent the correspond-
ing point on the conical section. Then,
by virtue of the symmetry of the con-
struction and the relationship between
“heights” and distances to the points f
and f ′ , Qq and Qq′ are equivalent,
respectively, to the true distances from
q to f and f ′ (i.e., the real distance in
the plane of the projected ellipse, not
those in the “edge-on” view). Since the
distance between the two horizontal

planes in the diagram is constant, Qq
+ Qq′ is constant, and therefore so is
the sum of the distance qf and qf ′. —Jonathan Tennenbaum

f f′m

(q)

Double-conical projection. The ellipse
formed by the original plane-cut of the
cone, can also be realized as the intersec-
tion of that cone with a second cone,
congruent to the first, but with the
opposite orientation, and whose axis is a
vertical line passing through the point f ′
lying symmetrically across the midpoint
m of the projected ellipse from f.

�

�

�

�

�

pa f horizontal plane

second
horizontal plane

f′mq

q′

Q

�

FOR FURTHER READING

Nicolaus of Cusa “On the Quadrature of the Circle,” trans. by
William F. Wertz, Jr., Fidelio (Spring 1994).*

William Gilbert De Magnete (On the Magnet), trans. by P. Fleury
Mottelay (New York: Dover Publications, 1958; reprint).*

Johannes Kepler New Astronomy, trans. by William Donahue (Lon-
don: Cambridge University Press, 1992). 

Epitome of Copernican Astronomy (Books 4 and 5) and Harmonies of
the World (Book 5), trans. by Charles Glenn Wallis (Amherst:
Prometheus Press, 1995; reprint).* 

The Harmony of the World, trans by E.J. Aiton, A.M. Duncan, and
J.V. Field (Philadelphia: American Philosophical Society, 1997).*

G.W. Leibniz “On Copernicus and the Relativity of Motion,” “Pref-
ace to the Dynamics,” and “A Specimen of Dynamics,” in G.W.
Leibniz: Philosophical Essays, trans. by Roger Ariew and Daniel
Garber (Indianapolis: Hackett Publishing Company, 1985).*

Carl F. Gauss Theory of the Motion of the Heavenly Bodies Moving
about the Sun in Conic Sections, trans. by Charles Henry Davis

(New York: Dover Publications, 1963; reprint).*
Bernhard Riemann “On the Hypotheses Which Lie at the Founda-

tion of Geometry,” in A Source Book in Mathematics, ed. by David
Eugene Smith (New York: Dover Publications, 1959; reprint).*

Lyndon H. LaRouche, Jr. The key methodological features of the
works of Kepler, Leibniz, and Gauss, in opposition to the corrup-
tions introduced by Sarpi, Galileo, Newton, and Euler, are a cen-
tral theme in all the writings of Lyndon H. LaRouche, Jr. Among
articles of immediate relevance to the matters presented here, are
the following works which have appeared in recent issues of Fide-
lio: “The Fraud of Algebraic Causality” (Winter 1994); “Leibniz
From Riemann’s Standpoint” (Fall 1996); “Behind the Notes”
(Summer 1997); “Spaceless-Timeless Boundaries in Leibniz” (Fall
1997). See also LaRouche’s book-length “Cold Fusion: Challenge
to U.S. Science Policy” (Schiller Institute Science Policy Memo,
August 1992).*

* Starred items may be ordered from Ben Franklin Booksellers. See adver-
tisement, page 111, for details.




